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Problems

Algebra

A1.

Let a1; a2; : : : ; an ; k , and M b e p ositive integers such that

1
a1

�
1
a2

� � � � �
1
an

� k and a1a2 : : : an � M:

If M ¡ 1, prove that the p olynomial

Ppxq � M px � 1qk � p x � a1qpx � a2q � � � px � anq

has no p ositive ro ots.

(Trinidad and Tobago)

A2.

Let q b e a real numb er. Gugu has a napkin with ten distinct real numb ers written

on it, and he writes the following three lines of real numb ers on the blackb oard:

� In the �rst line, Gugu writes down every numb er of the form a� b, where a and b are two

(not necessarily distinct) numb ers on his napkin.

� In the second line, Gugu writes down every numb er of the form qab, where a and b are

two (not necessarily distinct) numb ers from the �rst line .

� In the third line, Gugu writes down every numb er of the form a2 � b2 � c2 � d2
, where

a; b; c; dare four (not necessarily distinct) numb ers from the �rst line .

Determine all values of q such that, regardless of the numb ers on Gugu's napkin, every

numb er in the second line is also a numb er in the third line.

(Austria)

A3.

Let S b e a �nite set, and let A b e the set of all functions from S to S. Let f b e an

element of A , and let T � f pSq b e the image of S under f . Supp ose that f � g � f � g � f � g
for every g in A with g � f . Show that f pTq � T .

(India)

A4.

A sequence of real numb ers a1; a2; : : : satis�es the relation

an � � max
i � j � n

pai � aj q for all n ¡ 2017.

Prove that this sequence is b ounded, i.e., there is a constant M such that |an | ¤ M for all

p ositive integers n .

(Russia)
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A5.

An integer n ¥ 3 is given. We call an n -tuple of real numb ers px1; x2; : : : ; xnq Shiny

if for each p ermutation y1; y2; : : : ; yn of these numb ers we have

n� 1¸

i � 1

yi yi � 1 � y1y2 � y2y3 � y3y4 � � � � � yn� 1yn ¥ � 1:

Find the largest constant K � K pnq such that

¸

1¤ i   j ¤ n

x i x j ¥ K

holds for every Shiny n -tuple px1; x2; : : : ; xnq.

(Serbia)

A6.

Find all functions f : R Ñ R such that

f pf pxqf pyqq � f px � yq � f pxyq

for all x; y PR.

(Albania)

A7.

Let a0; a1; a2; : : : b e a sequence of integers and b0; b1; b2; : : : b e a sequence of positive

integers such that a0 � 0; a1 � 1, and

an� 1 �

#
anbn � an� 1; if bn� 1 � 1

anbn � an� 1; if bn� 1 ¡ 1
for n � 1; 2; : : :.

Prove that at least one of the two numb ers a2017 and a2018 must b e greater than or equal to 2017.

(Australia)

A8.

Assume that a function f : R Ñ R satis�es the following condition:

For every x; y PR such that

�
f pxq � y

��
f pyq � x

�
¡ 0, we have f pxq � y � f pyq � x .

Prove that f pxq � y ¤ f pyq � x whenever x ¡ y .

(Netherlands)
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Combinatorics

C1.

A rectangle R with o dd integer side lengths is divided into small rectangles with integer

side lengths. Prove that there is at least one among the small rectangles whose distances from

the four sides of R are either all o dd or all even.

(Singapore)

C2.

Let n b e a p ositive integer. De�ne a chameleon to b e any sequence of 3n letters, with

exactly n o ccurrences of each of the letters a, b, and c. De�ne a swap to b e the transp osition of

two adjacent letters in a chameleon. Prove that for any chameleon X , there exists a chameleon Y
such that X cannot b e changed to Y using fewer than 3n2{2 swaps.

(Australia)

C3.

Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In

each move, Sir Alex is allowed to p erform exactly one of the following two op erations:

(1) Cho ose any numb er of the form 2j
, where j is a non-negative integer, and put it into an

empty cell.

(2) Cho ose two (not necessarily adjacent) cells with the same numb er in them; denote that

numb er by 2j
. Replace the numb er in one of the cells with 2j � 1

and erase the numb er in

the other cell.

At the end of the game, one cell contains the numb er 2n
, where n is a given p ositive integer,

while the other cells are empty. Determine the maximum numb er of moves that Sir Alex could

have made, in terms of n .

(Thailand)

C4.

Let N ¥ 2 b e an integer. N pN � 1q so ccer players, no two of the same height, stand

in a row in some order. Coach Ralph wants to remove N pN � 1q p eople from this row so that

in the remaining row of 2N players, no one stands b etween the two tallest ones, no one stands

b etween the third and the fourth tallest ones, . . . , and �nally no one stands b etween the two

shortest ones. Show that this is always p ossible.

(Russia)

C5.

A hunter and an invisible rabbit play a game in the Euclidean plane. The hunter's

starting p oint H0 coincides with the rabbit's starting p oint R0 . In the n th

round of the game

( n ¥ 1), the following happ ens.

(1) First the invisible rabbit moves secretly and unobserved from its current p oint Rn� 1 to

some new p oint Rn with Rn� 1Rn � 1.

(2) The hunter has a tracking device (e.g. dog) that returns an approximate p osition R1
n of

the rabbit, so that RnR1
n ¤ 1.

(3) The hunter then visibly moves from p oint Hn� 1 to a new p oint Hn with Hn� 1Hn � 1.

Is there a strategy for the hunter that guarantees that after 109
such rounds the distance

b etween the hunter and the rabbit is b elow 100?

(Austria)
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C6.

Let n ¡ 1 b e an integer. An n � n � n cub e is comp osed of n3
unit cub es. Each

unit cub e is painted with one color. For each n � n � 1 b ox consisting of n2
unit cub es (of any

of the three p ossible orientations), we consider the set of the colors present in that b ox (each

color is listed only once). This way, we get 3n sets of colors, split into three groups according

to the orientation. It happ ens that for every set in any group, the same set app ears in b oth

of the other groups. Determine, in terms of n , the maximal p ossible numb er of colors that are

present.

(Russia)

C7.

For any �nite sets X and Y of p ositive integers, denote by f X pkq the k th

smallest

p ositive integer not in X , and let

X � Y � X Y t f X pyq: y PYu:

Let A b e a set of a ¡ 0 p ositive integers, and let B b e a set of b ¡ 0 p ositive integers. Prove

that if A � B � B � A , then

A � pA � � � � � p A � pA � Aqq: : : qlooooooooooooooooooomooooooooooooooooooon
A app ears b times

� B � pB � � � � � p B � pB � Bqq: : : qlooooooooooooooooooomooooooooooooooooooon
B app ears a times

:

(U.S.A.)

C8.

Let n b e a given p ositive integer. In the Cartesian plane, each lattice p oint

with nonnegative co ordinates initially contains a butter�y, and there are no other butter-

�ies. The neighborhood of a lattice p oint c consists of all lattice p oints within the axis-aligned

p2n � 1q � p 2n � 1q square centered at c, apart from c itself. We call a butter�y lonely , crowded ,

or comfortable , dep ending on whether the numb er of butter�ies in its neighb orho o d N is re-

sp ectively less than, greater than, or equal to half of the numb er of lattice p oints in N .

Every minute, all lonely butter�ies �y away simultaneously. This pro cess go es on for as

long as there are any lonely butter�ies. Assuming that the pro cess eventually stops, determine

the numb er of comfortable butter�ies at the �nal state.

(Bulgaria)
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Geometry

G1.

Let ABCDE b e a convex p entagon such that AB � BC � CD , = EAB � = BCD ,

and = EDC � = CBA . Prove that the p erp endicular line from E to BC and the line seg-

ments AC and BD are concurrent.

(Italy)

G2.

Let R and S b e distinct p oints on circle 
 , and let t denote the tangent line to 

at R . Point R1

is the re�ection of R with resp ect to S. A p oint I is chosen on the smaller arc

RS of 
 so that the circumcircle � of triangle ISR 1
intersects t at two di�erent p oints. Denote

by A the common p oint of � and t that is closest to R . Line AI meets 
 again at J . Show

that JR1
is tangent to � .

(Luxembourg)

G3.

Let O b e the circumcenter of an acute scalene triangle ABC . Line OA intersects the

altitudes of ABC through B and C at P and Q, resp ectively. The altitudes meet at H . Prove

that the circumcenter of triangle P QH lies on a median of triangle ABC .

(Ukraine)

G4.

In triangle ABC , let ! b e the excircle opp osite A . Let D , E , and F b e the p oints

where ! is tangent to lines BC , CA , and AB , resp ectively. The circle AEF intersects line BC
at P and Q. Let M b e the midp oint of AD . Prove that the circle MP Q is tangent to ! .

(Denmark)

G5.

Let ABCC1B1A1 b e a convex hexagon such that AB � BC , and supp ose that the

line segments AA 1 , BB 1 , and CC1 have the same p erp endicular bisector. Let the diagonals

AC1 and A1C meet at D , and denote by ! the circle ABC . Let ! intersect the circle A1BC1

again at E � B . Prove that the lines BB 1 and DE intersect on ! .

(Ukraine)

G6.

Let n ¥ 3 b e an integer. Two regular n -gons A and B are given in the plane. Prove

that the vertices of A that lie inside B or on its b oundary are consecutive.

(That is, prove that there exists a line separating those vertices of A that lie inside B or on

its b oundary from the other vertices of A .)

(Czech Republic)

G7.

A convex quadrilateral ABCD has an inscrib ed circle with center I . Let I a , I b, I c ,

and I d b e the incenters of the triangles DAB , ABC , BCD , and CDA , resp ectively. Supp ose

that the common external tangents of the circles AI bI d and CI bI d meet at X , and the common

external tangents of the circles BI aI c and DI aI c meet at Y . Prove that = XIY � 900
.

(Kazakhstan)

G8.

There are 2017 mutually external circles drawn on a blackb oard, such that no two

are tangent and no three share a common tangent. A tangent segment is a line segment that

is a common tangent to two circles, starting at one tangent p oint and ending at the other one.

Luciano is drawing tangent segments on the blackb oard, one at a time, so that no tangent

segment intersects any other circles or previously drawn tangent segments. Luciano keeps

drawing tangent segments until no more can b e drawn. Find all p ossible numb ers of tangent

segments when he stops drawing.

(Australia)
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Numb er Theory

N1.

The sequence a0; a1; a2; : : : of p ositive integers satis�es

an� 1 �

# ?
an ; if

?
an is an integer

an � 3; otherwise

for every n ¥ 0.

Determine all values of a0 ¡ 1 for which there is at least one numb er a such that an � a for

in�nitely many values of n .

(South Africa)

N2.

Let p ¥ 2 b e a prime numb er. Eduardo and Fernando play the following game making

moves alternately: in each move, the current player cho oses an index i in the set t 0; 1; : : : ; p� 1u
that was not chosen b efore by either of the two players and then cho oses an element ai of the

set t 0; 1; 2; 3; 4; 5; 6; 7; 8; 9u. Eduardo has the �rst move. The game ends after all the indices

i P t0; 1; : : : ; p � 1u have b een chosen. Then the following numb er is computed:

M � a0 � 10� a1 � � � � � 10p� 1 � ap� 1 �
p� 1¸

j � 0

aj � 10j :

The goal of Eduardo is to make the numb er M divisible by p, and the goal of Fernando is to

prevent this.

Prove that Eduardo has a winning strategy.

(Morocco)

N3.

Determine all integers n ¥ 2 with the following prop erty: for any integers a1; a2; : : : ; an

whose sum is not divisible by n , there exists an index 1 ¤ i ¤ n such that none of the numb ers

ai ; ai � ai � 1; : : : ; ai � ai � 1 � � � � � ai � n� 1

is divisible by n . (We let ai � ai � n when i ¡ n .)

(Thailand)

N4.

Call a rational numb er short if it has �nitely many digits in its decimal expansion.

For a p ositive integer m , we say that a p ositive integer t is m -tastic if there exists a numb er

c P t1; 2; 3; : : : ; 2017u such that

10t � 1
c � m

is short, and such that

10k � 1
c � m

is not short for any

1 ¤ k   t . Let Spmq b e the set of m -tastic numb ers. Consider Spmq for m � 1; 2; : : :. What is

the maximum numb er of elements in Spmq?

(Turkey)

N5.

Find all pairs pp; qq of prime numb ers with p ¡ q for which the numb er

pp � qqp� qpp � qqp� q � 1
pp � qqp� qpp � qqp� q � 1

is an integer.

(Japan)
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N6.

Find the smallest p ositive integer n , or show that no such n exists, with the following

prop erty: there are in�nitely many distinct n -tuples of p ositive rational numb ers pa1; a2; : : : ; anq
such that b oth

a1 � a2 � � � � � an and

1
a1

�
1
a2

� � � � �
1
an

are integers.

(Singapore)

N7.

Say that an ordered pair px; yq of integers is an irreducible lattice point if x and

y are relatively prime. For any �nite set S of irreducible lattice p oints, show that there is a

homogenous p olynomial in two variables, f px; yq, with integer co e�cients, of degree at least 1,

such that f px; yq � 1 for each px; yq in the set S.

Note: A homogenous p olynomial of degree n is any nonzero p olynomial of the form

f px; yq � a0xn � a1xn� 1y � a2xn� 2y2 � � � � � an� 1xyn� 1 � anyn :

(U.S.A.)

N8.

Let p b e an o dd prime numb er and Z¡ 0 b e the set of p ositive integers. Supp ose that

a function f : Z¡ 0 � Z¡ 0 Ñ t 0; 1u satis�es the following prop erties:

� f p1; 1q � 0;

� f pa; bq � f pb; aq � 1 for any pair of relatively prime p ositive integers pa; bq not b oth equal

to 1;

� f pa � b; bq � f pa; bq for any pair of relatively prime p ositive integers pa; bq.

Prove that

p� 1¸

n� 1

f pn2; pq ¥
a

2p � 2:

(Italy)
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Solutions

Algebra

A1.

Let a1; a2; : : : ; an ; k , and M b e p ositive integers such that

1
a1

�
1
a2

� � � � �
1
an

� k and a1a2 : : : an � M:

If M ¡ 1, prove that the p olynomial

Ppxq � M px � 1qk � p x � a1qpx � a2q � � � px � anq

has no p ositive ro ots.

(Trinidad and Tobago)

Solution 1. We �rst prove that, for x ¡ 0,

ai px � 1q1{ai ¤ x � ai ; (1)

with equality if and only if ai � 1. It is clear that equality o ccurs if ai � 1.

If ai ¡ 1, the AM�GM inequality applied to a single copy of x � 1 and ai � 1 copies of 1
yields

px � 1q �

ai � 1 oneshkkkkkkkikkkkkkkj
1 � 1 � � � � � 1

ai
¥ a i

a
px � 1q �1ai � 1 ùñ ai px � 1q1{ai ¤ x � ai :

Since x � 1 ¡ 1, the inequality is strict for ai ¡ 1.

Multiplying the inequalities (1) for i � 1; 2; : : : ; n yields

n¹

i � 1

ai px � 1q1{ai ¤
n¹

i � 1

px � ai q ðñ M px � 1q
° n

i � 1 1{ai �
n¹

i � 1

px � ai q ¤ 0 ðñ Ppxq ¤ 0

with equality i� ai � 1 for all i P t1; 2; : : : ; nu. But this implies M � 1, which is not p ossible.

Hence Ppxq   0 for all x PR�
, and P has no p ositive ro ots.

Comment 1. Inequality (1) can b e obtained in several ways. For instance, we may also use the

binomial theorem: since ai ¥ 1,

�
1 �

x
ai


 ai

�
ai¸

j � 0

�
ai

j


 �
x
ai


 j

¥
�

ai

0



�

�
ai

1



�

x
ai

� 1 � x:

Both pro ofs of (1) mimic pro ofs to Bernoulli's inequality for a p ositive integer exp onent ai ; we can

use this inequality directly: �
1 �

x
ai


 ai

¥ 1 � ai �
x
ai

� 1 � x;

and so

x � ai � ai

�
1 �

x
ai



¥ ai p1 � xq1{ai ;

or its (reversed) formulation, with exp onent 1{ai ¤ 1:

p1 � xq1{ai ¤ 1 �
1
ai

� x �
x � ai

ai
ùñ ai p1 � xq1{ai ¤ x � ai :
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Solution 2. We will prove that, in fact, all co e�cients of the p olynomial Ppxq are non-p ositive,

and at least one of them is negative, which implies that Ppxq   0 for x ¡ 0.

Indeed, since aj ¥ 1 for all j and aj ¡ 1 for some j (since a1a2 : : : an � M ¡ 1), we have

k � 1
a1

� 1
a2

� � � � � 1
an

  n , so the co e�cient of xn
in Ppxq is � 1   0. Moreover, the co e�cient

of xr
in Ppxq is negative for k   r ¤ n � degpPq.

For 0 ¤ r ¤ k , the co e�cient of xr
in Ppxq is

M �
�

k
r



�

¸

1¤ i 1   i 2  ���  i n � r ¤ n

ai 1 ai 2 � � � ai n � r � a1a2 � � � an �
�

k
r



�

¸

1¤ i 1   i 2  ���  i n � r ¤ n

ai 1 ai 2 � � � ai n � r ;

which is non-p ositive i� �
k
r



¤

¸

1¤ j 1   j 2  ���  j r ¤ n

1
aj 1aj 2 � � � aj r

: (2)

We will prove (2) by induction on r . For r � 0 it is an equality b ecause the constant term of

Ppxq is Pp0q � 0, and if r � 1, (2) b ecomes k �
° n

i � 1
1
ai

. For r ¡ 1, if (2) is true for a given

r   k , we have

�
k

r � 1



�

k � r
r � 1

�
�

k
r



¤

k � r
r � 1

�
¸

1¤ j 1   j 2  ���  j r ¤ n

1
aj 1aj 2 � � � aj r

;

and it su�ces to prove that

k � r
r � 1

�
¸

1¤ j 1   j 2  ���  j r ¤ n

1
aj 1aj 2 � � � aj r

¤
¸

1¤ j 1  ���  j r   j r � 1¤ n

1
aj 1 aj 2 � � � aj r aj r � 1

;

which is equivalent to

�
1
a1

�
1
a2

� � � � �
1
an

� r

 ¸

1¤ j 1   j 2  ���  j r ¤ n

1
aj 1aj 2 � � � aj r

¤pr � 1q
¸

1¤ j 1 ���  j r   j r � 1¤ n

1
aj 1aj 2 � � � aj r aj r � 1

:

Since there are r � 1 ways to cho ose a fraction

1
aj i

from

1
aj 1 aj 2 ��� aj r aj r � 1

to factor out, every

term

1
aj 1 aj 2 ��� aj r aj r � 1

in the right hand side app ears exactly r � 1 times in the pro duct

�
1
a1

�
1
a2

� � � � �
1
an


 ¸

1¤ j 1   j 2  ���  j r ¤ n

1
aj 1 aj 2 � � � aj r

:

Hence all terms in the right hand side cancel out.

The remaining terms in the left hand side can b e group ed in sums of the typ e

1
a2

j 1
aj 2 � � � aj r

�
1

aj 1a
2
j 2

� � � aj r

� � � � �
1

aj 1aj 2 � � � a2
j r

�
r

aj 1aj 2 � � � aj r

�
1

aj 1 aj 2 � � � aj r

�
1

aj 1

�
1

aj 2

� � � � �
1

aj r

� r



;

which are all non-p ositive b ecause ai ¥ 1 ùñ 1
ai

¤ 1, i � 1; 2; : : : ; n.

Comment 2. The result is valid for any real numb ers ai , i � 1; 2; : : : ; n with ai ¥ 1 and pro duct M
greater than 1. A variation of Solution 1, namely using weighted AM�GM (or the Bernoulli inequality

for real exp onents), actually proves that Ppxq   0 for x ¡ � 1 and x � 0.
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A2.

Let q b e a real numb er. Gugu has a napkin with ten distinct real numb ers written on

it, and he writes the following three lines of real numb ers on the blackb oard:

� In the �rst line, Gugu writes down every numb er of the form a� b, where a and b are two

(not necessarily distinct) numb ers on his napkin.

� In the second line, Gugu writes down every numb er of the form qab, where a and b are

two (not necessarily distinct) numb ers from the �rst line .

� In the third line, Gugu writes down every numb er of the form a2 � b2 � c2 � d2
, where

a; b; c; dare four (not necessarily distinct) numb ers from the �rst line .

Determine all values of q such that, regardless of the numb ers on Gugu's napkin, every

numb er in the second line is also a numb er in the third line.

(Austria)

Answer: � 2; 0; 2.

Solution 1. Call a numb er q good if every numb er in the second line app ears in the third line

unconditionally. We �rst show that the numb ers 0 and � 2 are go o d. The third line necessarily

contains 0, so 0 is go o d. For any two numb ers a; b in the �rst line, write a � x � y and b � u� v ,

where x; y; u; v are (not necessarily distinct) numb ers on the napkin. We may now write

2ab� 2px � yqpu � vq � p x � vq2 � p y � uq2 � p x � uq2 � p y � vq2;

which shows that 2 is go o d. By negating b oth sides of the ab ove equation, we also see that � 2
is go o d.

We now show that � 2; 0, and 2 are the only go o d numb ers. Assume for sake of contradiction

that q is a go o d numb er, where q R t� 2; 0; 2u. We now consider some particular choices of

numb ers on Gugu's napkin to arrive at a contradiction.

Assume that the napkin contains the integers 1; 2; : : : ; 10. Then, the �rst line contains

the integers � 9; � 8; : : : ; 9. The second line then contains q and 81q, so the third line must

also contain b oth of them. But the third line only contains integers, so q must b e an integer.

Furthermore, the third line contains no numb er greater than 162 � 92 � 92 � 02 � 02
or less

than � 162, so we must have � 162 ¤ 81q ¤ 162. This shows that the only p ossibilities for q
are � 1.

Now assume that q � � 1. Let the napkin contain 0; 1; 4; 8; 12; 16; 20; 24; 28; 32. The �rst

line contains � 1 and � 4, so the second line contains � 4. However, for every numb er a in the

�rst line, a � 2 pmod 4q, so we may conclude that a2 � 0; 1 pmod 8q. Consequently, every

numb er in the third line must b e congruent to � 2; � 1; 0; 1; 2 pmod 8q; in particular, � 4 cannot

b e in the third line, which is a contradiction.

Solution 2. Let q b e a go o d numb er, as de�ned in the �rst solution, and de�ne the p olynomial

Ppx1; : : : ; x10q as

¹

i   j

px i � x j q
¹

ai PS

�
qpx1 � x2qpx3 � x4q � p a1 � a2q2 � p a3 � a4q2 � p a5 � a6q2 � p a7 � a8q2

�
;

where S � t x1; : : : ; x10u.

We claim that Ppx1; : : : ; x10q � 0 for every choice of real numb ers px1; : : : ; x10q. If any two

of the x i are equal, then Ppx1; : : : ; x10q � 0 trivially. If no two are equal, assume that Gugu

has those ten numb ers x1; : : : ; x10 on his napkin. Then, the numb er qpx1 � x2qpx3 � x4q is in

the second line, so we must have some a1; : : : ; a8 so that

qpx1 � x2qpx3 � x4q � p a1 � a2q2 � p a3 � a4q2 � p a5 � a6q2 � p a7 � a8q2 � 0;
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and hence Ppx1; : : : ; x10q � 0.

Since every p olynomial that evaluates to zero everywhere is the zero p olynomial, and the

pro duct of two nonzero p olynomials is necessarily nonzero, we may de�ne F such that

F px1; : : : ; x10q � qpx1 � x2qpx3 � x4q � p a1 � a2q2 � p a3 � a4q2 � p a5 � a6q2 � p a7 � a8q2 � 0 (1)

for some particular choice ai PS.

Each of the sets t a1; a2u, t a3; a4u, t a5; a6u, and t a7; a8u is equal to at most one of the four

sets t x1; x3u; t x2; x3u; t x1; x4u, and t x2; x4u. Thus, without loss of generality, we may assume

that at most one of the sets t a1; a2u; t a3; a4u; t a5; a6u, and t a7; a8u is equal to t x1; x3u. Let

u1; u3; u5; u7 b e the indicator functions for this equality of sets: that is, ui � 1 if and only if

t ai ; ai � 1u � t x1; x3u. By assumption, at least three of the ui are equal to 0.

We now compute the co e�cient of x1x3 in F . It is equal to q � 2pu1 � u3 � u5 � u7q � 0,

and since at least three of the ui are zero, we must have that q P t� 2; 0; 2u, as desired.
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A3.

Let S b e a �nite set, and let A b e the set of all functions from S to S. Let f b e an

element of A , and let T � f pSq b e the image of S under f . Supp ose that f � g � f � g � f � g
for every g in A with g � f . Show that f pTq � T .

(India)

Solution. For n ¥ 1, denote the n -th comp osition of f with itself by

f n def� f � f � � � � � flooooooomooooooon
n times

:

By hyp othesis, if g P A satis�es f � g � f � g � f � g, then g � f . A natural idea is to try to

plug in g � f n
for some n in the expression f � g � f � g � f � g in order to get f n � f , which

solves the problem:

Claim. If there exists n ¥ 3 such that f n� 2 � f 2n� 1
, then the restriction f : T Ñ T of f to T

is a bijection.

Proof. Indeed, by hyp othesis, f n� 2 � f 2n� 1 ðñ f � f n � f � f n � f � f n ùñ f n � f .

Since n � 2 ¥ 1, the image of f n� 2
is contained in T � f pSq, hence f n� 2

restricts to a function

f n� 2 : T Ñ T . This is the inverse of f : T Ñ T . In fact, given t P T , say t � f psq with s P S,

we have

t � f psq � f npsq � f n� 2pf ptqq � f pf n� 2ptqq; i.e., f n� 2 � f � f � f n� 2 � id on T

(here id stands for the identity function). Hence, the restriction f : T Ñ T of f to T is bijective

with inverse given by f n� 2 : T Ñ T . l
It remains to show that n as in the claim exists. For that, de�ne

Sm
def � f m pSq pSm is image of f mq

Clearly the image of f m� 1
is contained in the image of f m

, i.e., there is a descending chain of

subsets of S
S …S1 …S2 …S3 …S4 … � � � ;

which must eventually stabilise since S is �nite, i.e., there is a k ¥ 1 such that

Sk � Sk� 1 � Sk� 2 � Sk� 3 � � � � def� S8 :

Hence f restricts to a surjective function f : S8 Ñ S8 , which is also bijective since S8 „ S is

�nite. To sum up, f : S8 Ñ S8 is a p ermutation of the elements of the �nite set S8 , hence

there exists an integer r ¥ 1 such that f r � id on S8 (for example, we may cho ose r � | S8 |!).

In other words,

f m� r � f m
on S for all m ¥ k: p�q

Clearly, p�q also implies that f m� tr � f m
for all integers t ¥ 1 and m ¥ k . So, to �nd n as in

the claim and �nish the problem, it is enough to cho ose m and t in order to ensure that there

exists n ¥ 3 satisfying

#
2n � 1 � m � tr

n � 2 � m
ðñ

#
m � 3 � tr

n � m � 2:

This can b e clearly done by cho osing m large enough with m � 3 pmod rq. For instance, we

may take n � 2kr � 1, so that

f n� 2 � f 2kr � 3 � f 4kr � 3 � f 2n� 1

where the middle equality follows by p�q since 2kr � 3 ¥ k .
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A4.

A sequence of real numb ers a1; a2; : : : satis�es the relation

an � � max
i � j � n

pai � aj q for all n ¡ 2017.

Prove that this sequence is b ounded, i.e., there is a constant M such that |an | ¤ M for all

p ositive integers n .

(Russia)

Solution 1. Set D � 2017. Denote

Mn � max
k  n

ak and mn � � min
k  n

ak � max
k  n

p� akq:

Clearly, the sequences pmnq and pMnq are nondecreasing. We need to prove that b oth are

b ounded.

Consider an arbitrary n ¡ D ; our �rst aim is to b ound an in terms of mn and Mn .

(i) There exist indices p and q such that an � �p ap � aqq and p � q � n . Since ap; aq ¤ Mn , we

have an ¥ � 2Mn .

(ii) On the other hand, cho ose an index k   n such that ak � Mn . Then, we have

an � � max
`   n

pan� ` � a`q ¤ �p an� k � akq � � an� k � Mn ¤ mn � Mn :

Summarizing (i) and (ii), we get

� 2Mn ¤ an ¤ mn � Mn ;

whence

mn ¤ mn� 1 ¤ maxt mn ; 2Mnu and Mn ¤ Mn� 1 ¤ maxt Mn ; mn � Mnu: (1)

Now, say that an index n ¡ D is lucky if mn ¤ 2Mn . Two cases are p ossible.

Case 1. Assume that there exists a lucky index n . In this case, (1) yields mn� 1 ¤ 2Mn and

Mn ¤ Mn� 1 ¤ Mn . Therefore, Mn� 1 � Mn and mn� 1 ¤ 2Mn � 2Mn� 1 . So, the index n � 1
is also lucky, and Mn� 1 � Mn . Applying the same arguments rep eatedly, we obtain that all

indices k ¡ n are lucky (i.e., mk ¤ 2M k for all these indices), and M k � Mn for all such indices.

Thus, all of the mk and M k are b ounded by 2Mn .

Case 2. Assume now that there is no lucky index, i.e., 2Mn   mn for all n ¡ D . Then (1)

shows that for all n ¡ D we have mn ¤ mn� 1 ¤ mn , so mn � mD � 1 for all n ¡ D . Since

Mn   mn {2 for all such indices, all of the mn and Mn are b ounded by mD � 1 .

Thus, in b oth cases the sequences pmnq and pMnq are b ounded, as desired.

Solution 2. As in the previous solution, let D � 2017. If the sequence is b ounded ab ove, say,

by Q, then we have that an ¥ mint a1; : : : ; aD ; � 2Qu for all n , so the sequence is b ounded. As-

sume for sake of contradiction that the sequence is not b ounded ab ove. Let ` � mint a1; : : : ; aD u,

and L � maxt a1; : : : ; aD u. Call an index n good if the following criteria hold:

an ¡ ai for each i   n; an ¡ � 2`; and n ¡ D (2)

We �rst show that there must b e some go o d index n . By assumption, we may take an

index N such that aN ¡ maxt L; � 2`u. Cho ose n minimally such that an � maxt a1; a2; : : : ; aN u.

Now, the �rst condition in (2) is satis�ed b ecause of the minimality of n , and the second and

third conditions are satis�ed b ecause an ¥ aN ¡ L; � 2` , and L ¥ ai for every i such that

1 ¤ i ¤ D .
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Let n b e a go o d index. We derive a contradiction. We have that

an � au � av ¤ 0; (3)

whenever u � v � n .

We de�ne the index u to maximize au over 1 ¤ u ¤ n � 1, and let v � n � u . Then, we note

that au ¥ av by the maximality of au .

Assume �rst that v ¤ D . Then, we have that

aN � 2` ¤ 0;

b ecause au ¥ av ¥ ` . But this contradicts our assumption that an ¡ � 2` in the second criteria

of (2).

Now assume that v ¡ D . Then, there exist some indices w1; w2 summing up to v such that

av � aw1 � aw2 � 0:

But combining this with (3), we have

an � au ¤ aw1 � aw2 :

Because an ¡ au , we have that maxt aw1 ; aw2 u ¡ au . But since each of the wi is less than v , this

contradicts the maximality of au .

Comment 1. We present two harder versions of this problem b elow.

Version 1. Let a1; a2; : : : b e a sequence of numb ers that satis�es the relation

an � � max
i � j � k� n

pai � aj � akq for all n ¡ 2017.

Then, this sequence is b ounded.

Proof. Set D � 2017. Denote

M n � max
k  n

ak and mn � � min
k  n

ak � max
k  n

p� akq:

Clearly, the sequences pmnq and pM n q are nondecreasing. We need to prove that b oth are b ounded.

Consider an arbitrary n ¡ 2D ; our �rst aim is to b ound an in terms of mi and M i . Set k � tn{2u.

(i) Cho ose indices p, q, and r such that an � �p ap � aq � ar q and p � q � r � n . Without loss of

generality, p ¥ q ¥ r .

Assume that p ¥ k � 1p¡ Dq; then p ¡ q � r . Hence

� ap � max
i 1 � i 2 � i 3 � p

pai 1 � ai 2 � ai 3 q ¥ aq � ar � ap� q� r ;

and therefore an � �p ap � aq � ar q ¥ paq � ar � ap� q� r q � aq � ar � ap� q� r ¥ � mn .

Otherwise, we have k ¥ p ¥ q ¥ r . Since n   3k , we have r   k . Then ap; aq ¤ M k� 1 and

ar ¤ M k , whence an ¥ � 2M k� 1 � M k .

Thus, in any case an ¥ � maxt mn ; 2M k� 1 � M ku.

(ii) On the other hand, cho ose p ¤ k and q ¤ k � 1 such that ap � M k� 1 and aq � M k . Then p� q   n ,

so an ¤ �p ap � aq � an� p� qq � � an� p� q � M k� 1 � M k ¤ mn � M k� 1 � M k .

To summarize,

� maxt mn ; 2M k� 1 � M ku ¤ an ¤ mn � M k� 1 � M k ;

whence

mn ¤ mn� 1 ¤ maxt mn ; 2M k� 1 � M ku and M n ¤ M n� 1 ¤ maxt M n ; mn � M k� 1 � M ku: (4)
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Now, say that an index n ¡ 2D is lucky if mn ¤ 2M tn{2u� 1 � M tn{2u. Two cases are p ossible.

Case 1. Assume that there exists a lucky index n ; set k � tn{2u. In this case, (4) yields mn� 1 ¤
2M k� 1 � M k and M n ¤ M n� 1 ¤ M n (the last relation holds, since mn � M k� 1 � M k ¤ p2M k� 1 �
M kq � M k� 1 � M k � M k� 1 ¤ M n ). Therefore, M n� 1 � M n and mn� 1 ¤ 2M k� 1 � M k ; the last relation

shows that the index n � 1 is also lucky.

Thus, all indices N ¡ n are lucky, and M N � M n ¥ mN {3, whence all the mN and M N are

b ounded by 3M n .

Case 2. Conversely, assume that there is no lucky index, i.e., 2M tn{2u� 1 � M tn{2u   mn for all n ¡ 2D .

Then (4) shows that for all n ¡ 2D we have mn ¤ mn� 1 ¤ mn , i.e., mN � m2D � 1 for all N ¡ 2D .

Since M N   m2N � 1{3 for all such indices, all the mN and M N are b ounded by m2D � 1 .

Thus, in b oth cases the sequences pmnq and pM n q are b ounded, as desired. l

Version 2. Let a1; a2; : : : b e a sequence of numb ers that satis�es the relation

an � � max
i 1 ����� i k � n

pai 1 � � � � � ai k q for all n ¡ 2017.

Then, this sequence is b ounded.

Proof. As in the solutions ab ove, let D � 2017. If the sequence is b ounded ab ove, say, by Q , then we

have that an ¥ mint a1; : : : ; aD ; � kQu for all n , so the sequence is b ounded. Assume for sake of contra-

diction that the sequence is not b ounded ab ove. Let ` � mint a1; : : : ; aD u, and L � maxt a1; : : : ; aD u.

Call an index n good if the following criteria hold:

an ¡ ai for each i   n; an ¡ � k`; and n ¡ D (5)

We �rst show that there must b e some go o d index n . By assumption, we may take an index N
such that aN ¡ maxt L; � k`u. Cho ose n minimally such that an � maxt a1; a2; : : : ; aN u. Now, the �rst

condition is satis�ed b ecause of the minimality of n , and the second and third conditions are satis�ed

b ecause an ¥ aN ¡ L; � k` , and L ¥ ai for every i such that 1 ¤ i ¤ D .

Let n b e a go o d index. We derive a contradiction. We have that

an � av1 � � � � � avk ¤ 0; (6)

whenever v1 � � � � � vk � n .

We de�ne the sequence of indices v1; : : : ; vk� 1 to greedily maximize av1 , then av2 , and so forth,

selecting only from indices such that the equation v1 � � � � � vk � n can b e satis�ed by p ositive integers

v1; : : : ; vk . More formally, we de�ne them inductively so that the following criteria are satis�ed by

the vi :

1. 1 ¤ vi ¤ n � p k � iq � p v1 � � � � � vi � 1q.

2. avi is maximal among all choices of vi from the �rst criteria.

First of all, we note that for each i , the �rst criteria is always satis�able by some vi , b ecause we

are guaranteed that

vi � 1 ¤ n � p k � p i � 1qq � pv1 � � � � � vi � 2q;

which implies

1 ¤ n � p k � iq � p v1 � � � � � vi � 1q:

Secondly, the sum v1 � � � � � vk� 1 is at most n � 1. De�ne vk � n � p v1 � � � � � vk� 1q. Then, (6)

is satis�ed by the vi . We also note that avi ¥ avj for all i   j ; otherwise, in the de�nition of vi , we

could have selected vj instead.

Assume �rst that vk ¤ D . Then, from (6), we have that

an � k` ¤ 0;

by using that av1 ¥ � � � ¥ avk ¥ ` . But this contradicts our assumption that an ¡ � k` in the second

criteria of (5) .
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Now assume that vk ¡ D , and then we must have some indices w1; : : : ; wk summing up to vk such

that

avk � aw1 � � � � � awk � 0:

But combining this with (6), we have

an � av1 � � � � � avk � 1 ¤ aw1 � � � � � awk :

Because an ¡ av1 ¥ � � � ¥ avk � 1 , we have that maxt aw1 ; : : : ; awk u ¡ avk � 1 . But since each of the wi

is less than vk , in the de�nition of the vk� 1 we could have chosen one of the wi instead, which is a

contradiction. l

Comment 2. It seems that each sequence satisfying the condition in Version 2 is eventually p erio dic,

at least when its terms are integers.

However, up to this moment, the Problem Selection Committee is not aware of a pro of for this fact

(even in the case k � 2).
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A5.

An integer n ¥ 3 is given. We call an n -tuple of real numb ers px1; x2; : : : ; xnq Shiny if

for each p ermutation y1; y2; : : : ; yn of these numb ers we have

n� 1¸

i � 1

yi yi � 1 � y1y2 � y2y3 � y3y4 � � � � � yn� 1yn ¥ � 1:

Find the largest constant K � K pnq such that

¸

1¤ i   j ¤ n

x i x j ¥ K

holds for every Shiny n -tuple px1; x2; : : : ; xnq.

(Serbia)

Answer: K � �p n � 1q{2.

Solution 1. First of all, we show that we may not take a larger constant K . Let t b e a p ositive

numb er, and take x2 � x3 � � � � � t and x1 � � 1{p2tq. Then, every pro duct x i x j ( i � j ) is

equal to either t2
or � 1{2. Hence, for every p ermutation yi of the x i , we have

y1y2 � � � � � yn� 1yn ¥ pn � 3qt2 � 1 ¥ � 1:

This justi�es that the n -tuple px1; : : : ; xnq is Shiny. Now, we have

¸

i   j

x i x j � �
n � 1

2
�

pn � 1qpn � 2q
2

t2:

Thus, as t approaches 0 from ab ove,

°
i   j x i x j gets arbitrarily close to �p n � 1q{2. This shows

that we may not take K any larger than �p n � 1q{2. It remains to show that

°
i   j x i x j ¥

�p n � 1q{2 for any Shiny choice of the x i .

From now onward, assume that px1; : : : ; xnq is a Shiny n -tuple. Let the zi ( 1 ¤ i ¤ n ) b e

some p ermutation of the x i to b e chosen later. The indices for zi will always b e taken mo dulo n .

We will �rst split up the sum

°
i   j x i x j �

°
i   j zi zj into tpn � 1q{2u expressions, each of the

form y1y2 � � � � � yn� 1yn for some p ermutation yi of the zi , and some leftover terms. More

sp eci�cally, write

¸

i   j

zi zj �
n� 1¸

q� 0

¸

i � j � q pmod nq
i � j pmod nq

zi zj �
t n � 1

2 u¸

p� 1

¸

i � j � 2p� 1;2p pmod nq
i � j pmod nq

zi zj � L; (1)

where L � z1z� 1 � z2z� 2 � � � � � zpn� 1q{2z�p n� 1q{2 if n is o dd, and L � z1z� 1 � z1z� 2 � z2z� 2 �
� � � � zpn� 2q{2z� n{2 if n is even. We note that for each p � 1; 2; : : : ; tpn � 1q{2u, there is some

p ermutation yi of the zi such that

¸

i � j � 2p� 1;2p pmod nq
i � j pmod nq

zi zj �
n� 1¸

k� 1

ykyk� 1;

b ecause we may cho ose y2i � 1 � zi � p� 1 for 1 ¤ i ¤ pn � 1q{2 and y2i � zp� i for 1 ¤ i ¤ n{2.

We show (1) graphically for n � 6; 7 in the diagrams b elow. The edges of the graphs each

represent a pro duct zi zj , and the dashed and dotted series of lines represents the sum of the

edges, which is of the form y1y2 � � � � � yn� 1yn for some p ermutation yi of the zi precisely when

the series of lines is a Hamiltonian path. The �lled edges represent the summands of L .
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Now, b ecause the zi are Shiny, we have that (1) yields the following b ound:

¸

i   j

zi zj ¥ �
Z

n � 1
2

^
� L:

It remains to show that, for each n , there exists some p ermutation zi of the x i such that L ¥ 0
when n is o dd, and L ¥ � 1{2 when n is even. We now split into cases based on the parity of n
and provide constructions of the p ermutations zi .

Since we have not made any assumptions yet ab out the x i , we may now assume without

loss of generality that

x1 ¤ x2 ¤ � � � ¤ xk ¤ 0 ¤ xk� 1 ¤ � � � ¤ xn : (2)

Case 1: n is odd.

Without loss of generality, assume that k (from (2)) is even, b ecause we may negate all

the x i if k is o dd. We then have x1x2; x3x4; : : : ; xn� 2xn� 1 ¥ 0 b ecause the factors are of the

same sign. Let L � x1x2 � x3x4 � � � � � xn� 2xn� 1 ¥ 0. We cho ose our zi so that this de�nition

of L agrees with the sum of the leftover terms in (1). Relab el the x i as zi such that

t z1; zn� 1u; t z2; zn� 2u; : : : ; t zpn� 1q{2; zpn� 1q{2u

are some p ermutation of

t x1; x2u; t x3; x4u; : : : ; t xn� 2; xn� 1u;

and zn � xn . Then, we have L � z1zn� 1 � � � � � zpn� 1q{2zpn� 1q{2 , as desired.

Case 2: n is even.

Let L � x1x2 � x2x3 � � � � � xn� 1xn . Assume without loss of generality k � 1. Now, we have

2L � p x1x2 � � � � � xn� 1xnq � p x1x2 � � � � � xn� 1xnq ¥ px2x3 � � � � � xn� 1xnq � xkxk� 1

¥ x2x3 � � � � � xn� 1xn � xnx1 ¥ � 1;

where the �rst inequality holds b ecause the only negative term in L is xkxk� 1 , the second

inequality holds b ecause x1 ¤ xk ¤ 0 ¤ xk� 1 ¤ xn , and the third inequality holds b ecause

the x i are assumed to b e Shiny. We thus have that L ¥ � 1{2. We now cho ose a suitable zi

such that the de�nition of L matches the leftover terms in (1).
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Relab el the x i with zi in the following manner: x2i � 1 � z� i ; x2i � zi (again taking indices

mo dulo n ). We have that

L �
¸

i � j � 0;� 1 pmod nq
i � j pmod nq

zi zj ;

as desired.

Solution 2. We present another pro of that

°
i   j x i x j ¥ �p n � 1q{2 for any Shiny n -tuple

px1; : : : ; xnq. Assume an ordering of the x i as in (2), and let ` � n � k . Assume without loss

of generality that k ¥ ` . Also assume k � n , (as otherwise, all of the x i are nonp ositive, and

so the inequality is trivial). De�ne the sets of indices S � t 1; 2; : : : ; ku and T � t k � 1; : : : ; nu.

De�ne the following sums:

K �
¸

i   j
i;j PS

x i x j ; M �
¸

i PS
j PT

x i x j ; and L �
¸

i   j
i;j PT

x i x j

By de�nition, K; L ¥ 0 and M ¤ 0. We aim to show that K � L � M ¥ �p n � 1q{2.

We split into cases based on whether k � ` or k ¡ ` .

Case 1: k ¡ ` .

Consider all p ermutations � : t 1; 2; : : : ; nu Ñ t 1; 2; : : : ; nu such that � � 1pTq � t 2; 4; : : : ; 2`u.

Note that there are k!`! such p ermutations � . De�ne

f p� q �
n� 1¸

i � 1

x � pi qx � pi � 1q:

We know that f p� q ¥ � 1 for every p ermutation � with the ab ove prop erty. Averaging f p� q
over all � gives

� 1 ¤
1

k!`!

¸

�

f p� q �
2`
k`

M �
2pk � ` � 1q

kpk � 1q
K;

where the equality holds b ecause there are k` pro ducts in M , of which 2` are selected for each � ,

and there are kpk � 1q{2 pro ducts in K , of which k � ` � 1 are selected for each � . We now

have

K � L � M ¥ K � L �
�

�
k
2

�
k � ` � 1

k � 1
K



� �

k
2

�
`

k � 1
K � L:

Since k ¤ n � 1 and K; L ¥ 0, we get the desired inequality.

Case 2: k � ` � n{2.

We do a similar approach, considering all � : t 1; 2; : : : ; nu Ñ t 1; 2; : : : ; nu such that � � 1pTq �
t 2; 4; : : : ; 2`u, and de�ning f the same way. Analogously to Case 1, we have

� 1 ¤
1

k!`!

¸

�

f p� q �
2` � 1

k`
M;

b ecause there are k` pro ducts in M , of which 2` � 1 are selected for each � . Now, we have that

K � L � M ¥ M ¥ �
n2

4pn � 1q
¥ �

n � 1
2

;

where the last inequality holds b ecause n ¥ 4.
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A6.

Find all functions f : R Ñ R such that

f pf pxqf pyqq � f px � yq � f pxyq p�q

for all x; y PR.

(Albania)

Answer: There are 3 solutions:

x ÞÑ0 or x ÞÑx � 1 or x ÞÑ1 � x px PRq:

Solution. An easy check shows that all the 3 ab ove mentioned functions indeed satisfy the

original equation p�q.

In order to show that these are the only solutions, �rst observe that if f pxq is a solution

then � f pxq is also a solution. Hence, without loss of generality we may (and will) assume that

f p0q ¤ 0 from now on. We have to show that either f is identically zero or f pxq � x � 1
( @x PR).

Observe that, for a �xed x � 1, we may cho ose y P R so that x � y � xy ðñ y � x
x� 1 ,

and therefore from the original equation p�q we have

f
�

f pxq �f
� x

x � 1

		
� 0 px � 1q: (1)

In particular, plugging in x � 0 in (1), we conclude that f has at least one zero, namely pf p0qq2 :

f
�
pf p0qq2

�
� 0: (2)

We analyze two cases (recall that f p0q ¤ 0):

Case 1: f p0q � 0.

Setting y � 0 in the original equation we get the identically zero solution:

f pf pxqf p0qq � f pxq � f p0q ùñ f pxq � 0 for all x PR:

From now on, we work on the main

Case 2: f p0q   0.

We b egin with the following

Claim 1.

f p1q � 0; f paq � 0 ùñ a � 1; and f p0q � � 1: (3)

Proof. We need to show that 1 is the unique zero of f . First, observe that f has at least one

zero a by (2); if a � 1 then setting x � a in ( 1 ) we get f p0q � 0, a contradiction. Hence

from ( 2 ) we get pf p0qq2 � 1. Since we are assuming f p0q   0, we conclude that f p0q � � 1. l

Setting y � 1 in the original equation p�q we get

f pf pxqf p1qq� f px� 1q � f pxq ðñ f p0q� f px� 1q � f pxq ðñ f px� 1q � f pxq� 1 px PRq:

An easy induction shows that

f px � nq � f pxq � n px PR; n PZq: (4)
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Now we make the following

Claim 2. f is injective.

Proof. Supp ose that f paq � f pbq with a � b. Then by ( 4 ), for all N PZ ,

f pa � N � 1q � f pb� N q � 1:

Cho ose any integer N   � b; then there exist x0; y0 PR with x0 � y0 � a� N � 1, x0y0 � b� N .

Since a � b, we have x0 � 1 and y0 � 1. Plugging in x0 and y0 in the original equation p�q we

get

f pf px0qf py0qq � f pa � N � 1q � f pb� N q ðñ f pf px0qf py0qq � 1 � 0

ðñ f pf px0qf py0q � 1q � 0 by (4)

ðñ f px0qf py0q � 0 by (3).

However, by Claim 1 we have f px0q � 0 and f py0q � 0 since x0 � 1 and y0 � 1, a contradiction.

l

Now the end is near. For any t P R, plug in px; yq � p t; � tq in the original equation p�q to

get

f pf ptqf p� tqq � f p0q � f p� t2q ðñ f pf ptqf p� tqq � f p� t2q � 1 by (3)

ðñ f pf ptqf p� tqq � f p� t2 � 1q by (4)

ðñ f ptqf p� tq � � t2 � 1 by injectivity of f:

Similarly, plugging in px; yq � p t; 1 � tq in p�q we get

f pf ptqf p1 � tqq � f p1q � f ptp1 � tqq ðñ f pf ptqf p1 � tqq � f ptp1 � tqq by (3)

ðñ f ptqf p1 � tq � tp1 � tq by injectivity of f:

But since f p1 � tq � 1 � f p� tq by ( 4 ), we get

f ptqf p1 � tq � tp1 � tq ðñ f ptqp1 � f p� tqq � tp1 � tq ðñ f ptq � p� t2 � 1q � tp1 � tq

ðñ f ptq � t � 1;

as desired.

Comment. Other approaches are p ossible. For instance, after Claim 1, we may de�ne

gpxq def � f pxq � 1:

Replacing x � 1 and y � 1 in place of x and y in the original equation p�q, we get

f pf px � 1qf py � 1qq � f px � y � 2q � f pxy � x � y � 1q px; y PRq;

and therefore, using (4) (so that in particular gpxq � f px � 1q), we may rewrite p�q as

gpgpxqgpyqq � gpx � yq � gpxy � x � yq px; y P Rq: p��q

We are now to show that gpxq � x for all x P R under the assumption (Claim 1) that 0 is the unique

zero of g.

Claim 3. Let n PZ and x PR . Then

(a) gpx � nq � x � n , and the conditions gpxq � n and x � n are equivalent.

(b) gpnxq � ngpxq.
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Proof. For part (a), just note that gpx � nq � x � n is just a reformulation of (4). Then gpxq � n ðñ
gpx � nq � 0 ðñ x � n � 0 since 0 is the unique zero of g. For part (b), we may assume that x � 0
since the result is obvious when x � 0. Plug in y � n{x in p��q and use part (a) to get

g
�

gpxqg
� n

x

		
� g

�
x �

n
x

	
� g

�
n � x �

n
x

	
ðñ g

�
gpxqg

� n
x

		
� n ðñ gpxqg

� n
x

	
� n:

In other words, for x � 0 we have

gpxq �
n

g
�
n{x

� :

In particular, for n � 1, we get gp1{xq � 1{gpxq, and therefore replacing x Ð nx in the last equation

we �nally get

gpnxq �
n

g
�
1{x

� � ngpxq;

as required.

Claim 4. The function g is additive , i.e., gpa � bq � gpaq � gpbq for all a; bPR .

Proof. Set x Ð � x and y Ð � y in p��q ; since g is an o dd function (by Claim 3(b) with n � � 1), we

get

gpgpxqgpyqq � gpx � yq � � gp� xy � x � yq:

Subtracting the last relation from p��q we have

2gpx � yq � gpxy � x � yq � gp� xy � x � yq

and since by Claim 3(b) we have 2gpx � yq � gp2px � yqq, we may rewrite the last equation as

gp� � � q � gp� q � gp� q where

#
� � xy � x � y

� � � xy � x � y:

In other words, we have additivity for all �; � PR for which there are real numb ers x and y satisfying

x � y �
� � �

2
and xy �

� � �
2

;

i.e., for all �; � PR such that p� � �
2 q2 � 4� � � �

2 ¥ 0. Therefore, given any a; bPR , we may cho ose n P Z
large enough so that we have additivity for � � na and � � nb, i.e.,

gpnaq � gpnbq � gpna � nbq ðñ ngpaq � ngpbq � ngpa � bq

by Claim 3(b). Cancelling n , we get the desired result. (Alternatively, setting either p�; � q � p a; bq or

p�; � q � p� a; � bq will ensure that p� � �
2 q2 � 4 � � � �

2 ¥ 0). l

Now we may �nish the solution. Set y � 1 in p��q , and use Claim 3 to get

gpgpxqgp1qq � gpx � 1q � gp2x � 1q ðñ gpgpxqq � gpxq � 1 � 2gpxq � 1 ðñ gpgpxqq � gpxq:

By additivity, this is equivalent to gpgpxq � xq � 0. Since 0 is the unique zero of g by assumption, we

�nally get gpxq � x � 0 ðñ gpxq � x for all x PR .
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A7.

Let a0; a1; a2; : : : b e a sequence of integers and b0; b1; b2; : : : b e a sequence of positive

integers such that a0 � 0; a1 � 1, and

an� 1 �

#
anbn � an� 1; if bn� 1 � 1

anbn � an� 1; if bn� 1 ¡ 1
for n � 1; 2; : : :.

Prove that at least one of the two numb ers a2017 and a2018 must b e greater than or equal to 2017.

(Australia)

Solution 1. The value of b0 is irrelevant since a0 � 0, so we may assume that b0 � 1.

Lemma. We have an ¥ 1 for all n ¥ 1.

Proof. Let us supp ose otherwise in order to obtain a contradiction. Let

n ¥ 1 b e the smallest integer with an ¤ 0: (1)

Note that n ¥ 2. It follows that an� 1 ¥ 1 and an� 2 ¥ 0. Thus we cannot have an �
an� 1bn� 1 � an� 2 , so we must have an � an� 1bn� 1 � an� 2 . Since an ¤ 0, we have an� 1 ¤ an� 2 .

Thus we have an� 2 ¥ an� 1 ¥ an .

Let

r b e the smallest index with ar ¥ ar � 1 ¥ ar � 2: (2)

Then r ¤ n� 2 by the ab ove, but also r ¥ 2: if b1 � 1, then a2 � a1 � 1 and a3 � a2b2 � a1 ¡ a2 ;

if b1 ¡ 1, then a2 � b1 ¡ 1 � a1 .

By the minimal choice ( 2 ) of r , it follows that ar � 1   ar . And since 2 ¤ r ¤ n � 2, by the

minimal choice ( 1 ) of n we have ar � 1; ar ; ar � 1 ¡ 0. In order to have ar � 1 ¥ ar � 2 , we must have

ar � 2 � ar � 1br � 1 � ar so that br ¥ 2. Putting everything together, we conclude that

ar � 1 � ar br � ar � 1 ¥ 2ar � ar � 1 � ar � p ar � ar � 1q ¡ ar ;

which contradicts ( 2 ). l
To complete the problem, we prove that maxt an ; an� 1u ¥ n by induction. The cases n � 0; 1

are given. Assume it is true for all non-negative integers strictly less than n , where n ¥ 2. There

are two cases:

Case 1: bn� 1 � 1.

Then an� 1 � anbn � an� 1 . By the inductive assumption one of an� 1 , an is at least n � 1 and

the other, by the lemma, is at least 1. Hence

an� 1 � anbn � an� 1 ¥ an � an� 1 ¥ pn � 1q � 1 � n:

Thus maxt an ; an� 1u ¥ n , as desired.

Case 2: bn� 1 ¡ 1.

Since we de�ned b0 � 1 there is an index r with 1 ¤ r ¤ n � 1 such that

bn� 1; bn� 2; : : : ; br ¥ 2 and br � 1 � 1:

We have ar � 1 � ar br � ar � 1 ¥ 2ar � ar � 1 . Thus ar � 1 � ar ¥ ar � ar � 1 .

Now we claim that ar � ar � 1 ¥ r . Indeed, this holds by insp ection for r � 1; for r ¥ 2, one

of ar ; ar � 1 is at least r � 1 by the inductive assumption, while the other, by the lemma, is at

least 1. Hence ar � ar � 1 ¥ r , as claimed, and therefore ar � 1 � ar ¥ r by the last inequality in

the previous paragraph.

Since r ¥ 1 and, by the lemma, ar ¥ 1, from ar � 1 � ar ¥ r we get the following two

inequalities:

ar � 1 ¥ r � 1 and ar � 1 ¡ ar :
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Now observe that

am ¡ am� 1 ùñ am� 1 ¡ am for m � r � 1; r � 2; : : : ; n � 1;

since am� 1 � ambm � am� 1 ¥ 2am � am� 1 � am � p am � am� 1q ¡ am . Thus

an ¡ an� 1 ¡ � � � ¡ ar � 1 ¥ r � 1 ùñ an ¥ n:

So maxt an ; an� 1u ¥ n , as desired.

Solution 2. We say that an index n ¡ 1 is bad if bn� 1 � 1 and bn� 2 ¡ 1; otherwise n is good .

The value of b0 is irrelevant to the de�nition of panq since a0 � 0; so we assume that b0 ¡ 1.

Lemma 1. (a) an ¥ 1 for all n ¡ 0.

(b) If n ¡ 1 is go o d, then an ¡ an� 1 .

Proof. Induction on n . In the base cases n � 1; 2 we have a1 � 1 ¥ 1, a2 � b1a1 ¥ 1, and �nally

a2 ¡ a1 if 2 is go o d, since in this case b1 ¡ 1.

Now we assume that the lemma statement is proved for n � 1; 2; : : : ; k with k ¥ 2, and

prove it for n � k � 1. Recall that ak and ak� 1 are p ositive by the induction hyp othesis.

Case 1: k is bad.

We have bk� 1 � 1, so ak� 1 � bkak � ak� 1 ¥ ak � ak� 1 ¡ ak ¥ 1, as required.

Case 2: k is good.

We already have ak ¡ ak� 1 ¥ 1 by the induction hyp othesis. We consider three easy

sub cases.

Subcase 2.1: bk ¡ 1.

Then ak� 1 ¥ bkak � ak� 1 ¥ ak � p ak � ak� 1q ¡ ak ¥ 1.

Subcase 2.2: bk � bk� 1 � 1.

Then ak� 1 � ak � ak� 1 ¡ ak ¥ 1.

Subcase 2.3: bk � 1 but bk� 1 ¡ 1.

Then k � 1 is bad, and we need to prove only (a), which is trivial: ak� 1 � ak � ak� 1 ¥ 1.

So, in all three sub cases we have veri�ed the required relations. l

Lemma 2. Assume that n ¡ 1 is bad. Then there exists a j P t1; 2; 3u such that an� j ¥
an� 1 � j � 1, and an� i ¥ an� 1 � i for all 1 ¤ i   j .

Proof. Recall that bn� 1 � 1. Set

m � inf t i ¡ 0 : bn� i � 1 ¡ 1u

(p ossibly m � �8 ). We claim that j � mint m; 3u works. Again, we distinguish several cases,

according to the value of m ; in each of them we use Lemma 1 without reference.

Case 1: m � 1, so bn ¡ 1.

Then an� 1 ¥ 2an � an� 1 ¥ an� 1 � 2, as required.

Case 2: m � 2, so bn � 1 and bn� 1 ¡ 1.

Then we successively get

an� 1 � an � an� 1 ¥ an� 1 � 1;

an� 2 ¥ 2an� 1 � an ¥ 2pan� 1 � 1q � an � an� 1 � p an� 1 � an � 2q ¥ an� 1 � 4;

which is even b etter than we need.
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Case 3: m ¡ 2, so bn � bn� 1 � 1.

Then we successively get

an� 1 � an � an� 1 ¥ an� 1 � 1; an� 2 � an� 1 � an ¥ an� 1 � 1 � an ¥ an� 1 � 2;

an� 3 ¥ an� 2 � an� 1 ¥ pan� 1 � 1q � p an� 1 � 2q ¥ an� 1 � 4;

as required. l

Lemmas 1(b) and 2 provide enough information to prove that maxt an ; an� 1u ¥ n for all n
and, moreover, that an ¥ n often enough. Indeed, assume that we have found some n with

an� 1 ¥ n� 1. If n is go o d, then by Lemma 1(b) we have an ¥ n as well. If n is bad, then Lemma 2

yields maxt an� i ; an� i � 1u ¥ an� 1 � i � 1 ¥ n � i for all 0 ¤ i   j and an� j ¥ an� 1 � j � 1 ¥ n � j ;

so n � j is the next index to start with.
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A8.

Assume that a function f : R Ñ R satis�es the following condition:

For every x; y PR such that

�
f pxq � y

��
f pyq � x

�
¡ 0, we have f pxq � y � f pyq � x .

Prove that f pxq � y ¤ f pyq � x whenever x ¡ y .

(Netherlands)

Solution 1. De�ne gpxq � x � f pxq. The condition on f then rewrites as follows:

For every x; y PR such that

�
px � yq � gpxq

��
px � yq � gpyq

�
¡ 0, we have gpxq � gpyq.

This condition may in turn b e rewritten in the following form:

If gpxq � gpyq, then the number x � y lies (non-strictly) between gpxq and gpyq. p�q

Notice here that the function g1pxq � � gp� xq also satis�es p�q, since

g1pxq � g1pyq ùñ gp� xq � gp� yq ùñ �p x � yq lies b etween gp� xq and gp� yq

ùñ x � y lies b etween g1pxq and g1pyq.

On the other hand, the relation we need to prove reads now as

gpxq ¤ gpyq whenever x   y . (1)

Again, this condition is equivalent to the same one with g replaced by g1 .

If gpxq � 2x for all x P R, then p�q is obvious; so in what follows we consider the other

case. We split the solution into a sequence of lemmas, strengthening one another. We always

consider some value of x with gpxq � 2x and denote X � gpxq.

Lemma 1. Assume that X   2x . Then on the interval pX � x; xs the function g attains at

most two values � namely, X and, p ossibly, some Y ¡ X . Similarly, if X ¡ 2x , then g attains

at most two values on rx; X � xq � namely, X and, p ossibly, some Y   X .

Proof. We start with the �rst claim of the lemma. Notice that X � x   x , so the considered

interval is nonempty.

Take any a P pX � x; xq with gpaq � X (if it exists). If gpaq   X , then p�q yields gpaq ¤
a � x ¤ gpxq � X , so a ¤ X � x which is imp ossible. Thus, gpaq ¡ X and hence by p�q we get

X ¤ a � x ¤ gpaq.

Now, for any b P pX � x; xq with gpbq � X we similarly get b� x ¤ gpbq. Therefore, the

numb er a � b (which is smaller than each of a � x and b� x ) cannot lie b etween gpaq and gpbq,

which by p�q implies that gpaq � gpbq. Hence g may attain only two values on pX � x; xs,

namely X and gpaq ¡ X .

To prove the second claim, notice that g1p� xq � � X   2 � p� xq, so g1 attains at most two

values on p� X � x; � xs, i.e., � X and, p ossibly, some � Y ¡ � X . Passing back to g, we get

what we need. l

Lemma 2. If X   2x , then g is constant on pX � x; xq. Similarly, if X ¡ 2x , then g is constant

on px; X � xq.

Proof. Again, it su�ces to prove the �rst claim only. Assume, for the sake of contradiction,

that there exist a; bP pX � x; xq with gpaq � gpbq; by Lemma 1, we may assume that gpaq � X
and Y � gpbq ¡ X .

Notice that mint X � a; X � bu ¡ X � x , so there exists a u P pX � x; xq such that

u   mint X � a; X � bu. By Lemma 1, we have either gpuq � X or gpuq � Y . In the former

case, by p�q we have X ¤ u � b ¤ Y which contradicts u   X � b. In the second case, by p�q
we have X ¤ u � a ¤ Y which contradicts u   X � a. Thus the lemma is proved. l
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Lemma 3. If X   2x , then gpaq � X for all a P pX � x; xq. Similarly, if X ¡ 2x , then gpaq � X
for all a P px; X � xq.

Proof. Again, we only prove the �rst claim.

By Lemmas 1 and 2, this claim may b e violated only if g takes on a constant value Y ¡ X
on pX � x; xq. Cho ose any a; bP pX � x; xq with a   b. By p�q, we have

Y ¥ b� x ¥ X: (2)

In particular, we have Y ¥ b� x ¡ 2a. Applying Lemma 2 to a in place of x , we obtain that g
is constant on pa; Y � aq. By (2) again, we have x ¤ Y � b   Y � a; so x; b P pa; Y � aq. But

X � gpxq � gpbq � Y , which is a contradiction. l

Now we are able to �nish the solution. Assume that gpxq ¡ gpyq for some x   y . Denote

X � gpxq and Y � gpyq; by p�q, we have X ¥ x � y ¥ Y , so Y � y ¤ x   y ¤ X � x ,

and hence pY � y; yq X px; X � xq � p x; yq � ? . On the other hand, since Y � y   y and

x   X � x , Lemma 3 shows that g should attain a constant value X on px; X � xq and a constant

value Y � X on pY � y; yq. Since these intervals overlap, we get the �nal contradiction.

Solution 2. As in the previous solution, we pass to the function g satisfying p�q and notice

that we need to prove the condition (1). We will also make use of the function g1 .

If g is constant, then (1) is clearly satis�ed. So, in the sequel we assume that g takes on at

least two di�erent values. Now we collect some information ab out the function g.

Claim 1. For any c PR, all the solutions of gpxq � c are b ounded.

Proof. Fix any y PR with gpyq � c. Assume �rst that gpyq ¡ c. Now, for any x with gpxq � c,

by p�q we have c ¤ x � y ¤ gpyq, or c � y ¤ x ¤ gpyq � y . Since c and y are constant, we get

what we need.

If gpyq   c, we may switch to the function g1 for which we have g1p� yq ¡ � c. By the ab ove

arguments, we obtain that all the solutions of g1p� xq � � c are b ounded, which is equivalent

to what we need. l

As an immediate consequence, the function g takes on in�nitely many values, which shows

that the next claim is indeed widely applicable.

Claim 2. If gpxq   gpyq   gpzq, then x   z.

Proof. By p�q, we have gpxq ¤ x � y ¤ gpyq ¤ z � y ¤ gpzq, so x � y ¤ z � y , as required. l

Claim 3. Assume that gpxq ¡ gpyq for some x   y . Then gpaq P tgpxq; gpyqu for all a P rx; ys.

Proof. If gpyq   gpaq   gpxq, then the triple py; a; xq violates Claim 2. If gpaq   gpyq   gpxq,

then the triple pa; y; xq violates Claim 2. If gpyq   gpxq   gpaq, then the triple py; x; aq violates

Claim 2. The only p ossible cases left are gpaq P tgpxq; gpyqu. l

In view of Claim 3, we say that an interval I (which may b e op en, closed, or semi-op en) is

a Dirichlet interval

�
if the function g takes on just two values on I .

Assume now, for the sake of contradiction, that (1) is violated by some x   y . By Claim 3,

rx; ys is a Dirichlet interval. Set

r � inf t a: pa; ys is a Dirichlet interval u and s � supt b: rx; bq is a Dirichlet interval u:

Clearly, r ¤ x   y ¤ s. By Claim 1, r and s are �nite. Denote X � gpxq, Y � gpyq, and

� � p y � xq{2.

Supp ose �rst that there exists a t P pr ; r � � q with f ptq � Y . By the de�nition of r , the

interval pr � �; ys is not Dirichlet, so there exists an r 1 P pr � �; r s such that gpr 1q R tX; Y u.

�
The name Dirichlet interval is chosen for the reason that g theoretically might act similarly to the Dirichlet

function on this interval.
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The function g attains at least three distinct values on rr 1; ys, namely gpr 1q, gpxq, and gpyq.

Claim 3 now yields gpr 1q ¤ gpyq; the equality is imp ossible by the choice of r 1
, so in fact

gpr 1q   Y . Applying p�q to the pairs pr 1; yq and pt; xq we obtain r 1 � y ¤ Y ¤ t � x , whence

r � � � y   r 1 � y ¤ t � x   r � � � x , or y � x   2� . This is a contradiction.

Thus, gptq � X for all t P pr ; r � � q. Applying the same argument to g1 , we get gptq � Y
for all t P ps � �; sq.

Finally, cho ose some s1; s2 P ps � �; sq with s1   s2 and denote � � p s2 � s1q{2. As b efore,

we cho ose r 1 P pr � � ; r q with gpr 1q R tX; Y u and obtain gpr 1q   Y . Cho ose any t P pr ; r � � q; by

the ab ove arguments, we have gptq � X and gps1q � gps2q � Y . As b efore, we apply p�q to the

pairs pr 1; s2q and pt; s1q obtaining r � � � s2   r 1� s2 ¤ Y ¤ t � s1   r � � � s1 , or s2 � s1   2� .

This is a �nal contradiction.

Comment 1. The original submission discussed the same functions f , but the question was di�er-

ent � namely, the following one:

Prove that the equation f pxq � 2017x has at most one solution, and the equation f pxq � � 2017x
has at least one solution.

The Problem Selection Committee decided that the question we are prop osing is more natural,

since it provides more natural information ab out the function g (which is indeed the main character

in this story). On the other hand, the new problem statement is strong enough in order to imply the

original one easily.

Namely, we will deduce from the new problem statement (along with the facts used in the solutions)

that piq for every N ¡ 0 the equation gpxq � � Nx has at most one solution, and pii q for every N ¡ 1
the equation gpxq � Nx has at least one solution.

Claim piq is now trivial. Indeed, g is proven to b e non-decreasing, so gpxq� Nx is strictly increasing

and thus has at most one zero.

We pro ceed on claim pii q. If gp0q � 0, then the required ro ot has b een already found. Otherwise,

we may assume that gp0q ¡ 0 and denote c � gp0q. We intend to prove that x � c{N is the required

ro ot. Indeed, by monotonicity we have gpc{N q ¥ gp0q � c; if we had gpc{N q ¡ c, then p�q would yield

c ¤ 0 � c{N ¤ gpc{N q which is false. Thus, gpxq � c � Nx .

Comment 2. There are plenty of functions g satisfying p�q (and hence of functions f satisfying

the problem conditions). One simple example is g0pxq � 2x . Next, for any increasing sequence

A � p : : : ; a� 1; a0; a1; : : : q which is unb ounded in b oth directions (i.e., for every N this sequence contains

terms greater than N , as well as terms smaller than � N ), the function gA de�ned by

gA pxq � ai � ai � 1 whenever x P rai ; ai � 1q

satis�es p�q. Indeed, pick any x   y with gpxq � gpyq; this means that x P rai ; ai � 1q and y P raj ; aj � 1q
for some i   j . Then we have gpxq � ai � ai � 1 ¤ x � y   aj � aj � 1 � gpyq, as required.

There also exist examples of the mixed b ehavior; e.g., for an arbitrary sequence A as ab ove and an

arbitrary subset I „ Z the function

gA;I pxq �

#
g0pxq; x P rai ; ai � 1q with i P I ;

gA pxq; x P rai ; ai � 1q with i RI

also satis�es p�q.

Finally, it is even p ossible to provide a complete description of all functions g satisfying p�q (and

hence of all functions f satisfying the problem conditions); however, it seems to b e far out of scop e for

the IMO. This description lo oks as follows.

Let A b e any closed subset of R which is unb ounded in b oth directions. De�ne the functions iA ,

sA , and gA as follows:

iA pxq � inf t a PA : a ¥ xu; sA pxq � supt a PA : a ¤ xu; gA pxq � iA pxq � sA pxq:
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It is easy to see that for di�erent sets A and B the functions gA and gB are also di�erent (since, e.g.,

for any a PA zB the function gB is constant in a small neighb orho o d of a, but the function gA is not).

One may check, similarly to the arguments ab ove, that each such function satis�es p�q.

Finally, one more mo di�cation is p ossible. Namely, for any x P A one may rede�ne gA pxq (which

is 2x ) to b e any of the numb ers

gA� pxq � iA� pxq � x or gA� pxq � x � sA� pxq;

where iA� pxq � inf t a PA : a ¡ xu and sA� pxq � supt a PA : a   xu:

This really changes the value if x has some right (resp ectively, left) semi-neighb orho o d disjoint from A ,

so there are at most countably many p ossible changes; all of them can b e p erformed indep endently.

With some e�ort, one may show that the construction ab ove provides all functions g satisfying p�q.
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Combinatorics

C1.

A rectangle R with o dd integer side lengths is divided into small rectangles with integer

side lengths. Prove that there is at least one among the small rectangles whose distances from

the four sides of R are either all o dd or all even.

(Singapore)

Solution. Let the width and height of R b e o dd numb ers a and b. Divide R into ab unit

squares and color them green and yellow in a checkered pattern. Since the side lengths of a
and b are o dd, the corner squares of R will all have the same color, say green.

Call a rectangle (either R or a small rectangle) green if its corners are all green; call it

yel low if the corners are all yellow, and call it mixed if it has b oth green and yellow corners. In

particular, R is a green rectangle.

We will use the following trivial observations.

 Every mixed rectangle contains the same numb er of green and yellow squares;

 Every green rectangle contains one more green square than yellow square;

 Every yellow rectangle contains one more yellow square than green square.

The rectangle R is green, so it contains more green unit squares than yellow unit squares.

Therefore, among the small rectangles, at least one is green. Let S b e such a small green

rectangle, and let its distances from the sides of R b e x , y , u and v , as shown in the picture.

The top-left corner of R and the top-left corner of S have the same color, which happ en if and

only if x and u have the same parity. Similarly, the other three green corners of S indicate that

x and v have the same parity, y and u have the same parity, i.e. x , y , u and v are all o dd or all

even.

u v

R

S

y

x
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C2.

Let n b e a p ositive integer. De�ne a chameleon to b e any sequence of 3n letters, with

exactly n o ccurrences of each of the letters a, b, and c. De�ne a swap to b e the transp osition of

two adjacent letters in a chameleon. Prove that for any chameleon X , there exists a chameleon Y
such that X cannot b e changed to Y using fewer than 3n2{2 swaps.

(Australia)

Solution 1. To start, notice that the swap of two identical letters do es not change a chameleon,

so we may assume there are no such swaps.

For any two chameleons X and Y , de�ne their distance dpX; Y q to b e the minimal numb er

of swaps needed to transform X into Y (or vice versa). Clearly, dpX; Y q � dpY; Zq ¥ dpX; Z q
for any three chameleons X , Y , and Z .

Lemma. Consider two chameleons

P � aa : : : aloomoon
n

bb : : : bloomoon
n

cc : : : cloomoon
n

and Q � cc : : : cloomoon
n

bb : : : bloomoon
n

aa : : : aloomoon
n

:

Then dpP; Qq ¥ 3n2
.

Proof. For any chameleon X and any pair of distinct letters u; v P ta; b; cu, we de�ne f u;v pX q
to b e the numb er of pairs of p ositions in X such that the left one is o ccupied by u , and

the right one is o ccupied by v . De�ne f pX q � f a;bpX q � f a;cpX q � f b;cpX q. Notice that

f a;bpPq � f a;cpPq � f b;cpPq � n2
and f a;bpQq � f a;cpQq � f b;cpQq � 0, so f pPq � 3n2

and

f pQq � 0.

Now consider some swap changing a chameleon X to X 1
; say, the letters a and b are swapp ed.

Then f a;bpX q and f a;bpX 1q di�er by exactly 1, while f a;cpX q � f a;cpX 1q and f b;cpX q � f b;cpX 1q.

This yields |f pX q � f pX 1q| � 1, i.e., on any swap the value of f changes by 1. Hence dpX; Y q ¥
|f pX q � f pYq| for any two chameleons X and Y . In particular, dpP; Qq ¥ |f pPq � f pQq| � 3n2

,

as desired. l

Back to the problem, take any chameleon X and notice that dpX; P q� dpX; Qq ¥ dpP; Qq ¥
3n2

by the lemma. Consequently, maxt dpX; P q; dpX; Qqu ¥ 3n2

2 , which establishes the problem

statement.

Comment 1. The problem may b e reformulated in a graph language. Construct a graph G with the

chameleons as vertices, two vertices b eing connected with an edge if and only if these chameleons di�er

by a single swap. Then dpX; Y q is the usual distance b etween the vertices X and Y in this graph.

Recall that the radius of a connected graph G is de�ned as

r pGq � min
vPV

max
uPV

dpu; vq:

So we need to prove that the radius of the constructed graph is at least 3n2{2.

It is well-known that the radius of any connected graph is at least the half of its diameter (which

is simply maxu;vPV dpu; vq). Exactly this fact has b een used ab ove in order to �nish the solution.

Solution 2. We use the notion of distance from Solution 1, but provide a di�erent lower

b ound for it.

In any chameleon X , we enumerate the p ositions in it from left to right by 1; 2; : : : ; 3n .

De�ne scpX q as the sum of p ositions o ccupied by c. The value of sc changes by at most 1 on

each swap, but this fact alone do es not su�ce to solve the problem; so we need an improvement.

For every chameleon X , denote by X c the sequence obtained from X by removing all n
letters c. Enumerate the p ositions in X c from left to right by 1; 2; : : : ; 2n , and de�ne sc;bpX q
as the sum of p ositions in X c o ccupied by b. (In other words, here we consider the p ositions of

the b's relatively to the a's only.) Finally, denote

d1pX; Y q:� | scpX q � scpYq| � | sc;bpX q � sc;bpYq|:
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Now consider any swap changing a chameleon X to X 1
. If no letter c is involved into this

swap, then scpX q � scpX 1q; on the other hand, exactly one letter b changes its p osition in X c , so

|sc;bpX q � sc;bpX 1q| � 1. If a letter c is involved into a swap, then X c � X 1
c , so sc;bpX q � sc;bpX 1q

and |scpX q � scpX 1q| � 1. Thus, in all cases we have d1pX; X 1q � 1.

As in the previous solution, this means that dpX; Y q ¥ d1pX; Y q for any two chameleons X
and Y . Now, for any chameleon X we will indicate a chameleon Y with d1pX; Y q ¥ 3n2{2, thus

�nishing the solution.

The function sc attains all integer values from 1 � � � � � n � npn� 1q
2 to p2n � 1q � � � � � 3n �

2n2 � npn� 1q
2 . If scpX q ¤ n2 � npn� 1q

2 , then we put the letter c into the last n p ositions in Y ;

otherwise we put the letter c into the �rst n p ositions in Y . In either case we already have

|scpX q � scpYq| ¥ n2
.

Similarly, sc;b ranges from

npn� 1q
2 to n2 � npn� 1q

2 . So, if sc;bpX q ¤ n2

2 � npn� 1q
2 , then we put

the letter b into the last n p ositions in Y which are still free; otherwise, we put the letter b into

the �rst n such p ositions. The remaining p ositions are o ccupied by a. In any case, we have

|sc;bpX q � sc;bpYq| ¥ n2

2 , thus d1pX; Y q ¥ n2 � n2

2 � 3n2

2 , as desired.

Comment 2. The two solutions ab ove used two lower b ounds |f pX q � f pYq| and d1pX; Y q for the

numb er dpX; Y q. One may see that these b ounds are closely related to each other, as

f a;cpX q � f b;cpX q � scpX q �
npn � 1q

2
and f a;bpX q � sc;bpX q �

npn � 1q
2

:

One can see that, e.g., the b ound d1pX; Y q could as well b e used in the pro of of the lemma in Solution 1.

Let us describ e here an even sharp er b ound which also can b e used in di�erent versions of the

solutions ab ove.

In each chameleon X , enumerate the o ccurrences of a from the left to the right as a1; a2; : : : ; an .

Since we got rid of swaps of identical letters, the relative order of these letters remains the same during

the swaps. Perform the same op eration with the other letters, obtaining new letters b1; : : : ; bn and

c1; : : : ; cn . Denote by A the set of the 3n obtained letters.

Since all 3n letters b ecame di�erent, for any chameleon X and any s P A we may de�ne the

p osition NspX q of s in X (thus 1 ¤ NspX q ¤ 3n ). Now, for any two chameleons X and Y we say that

a pair of letters ps; tq PA � A is an pX; Y q-inversion if NspX q   N t pX q but NspYq ¡ N t pYq, and de�ne

d� pX; Y q to b e the numb er of pX; Y q-inversions. Then for any two chameleons Y and Y 1
di�ering by a

single swap, we have |d� pX; Y q � d� pX; Y 1q| � 1. Since d� pX; X q � 0, this yields dpX; Y q ¥ d� pX; Y q
for any pair of chameleons X and Y . The b ound d�

may also b e used in b oth Solution 1 and Solution 2.

Comment 3. In fact, one may prove that the distance d�
de�ned in the previous comment coincides

with d. Indeed, if X � Y , then there exist an pX; Y q-inversion ps; tq. One can show that such s and t
may b e chosen to o ccupy consecutive p ositions in Y . Clearly, s and t corresp ond to di�erent letters

among t a; b; cu. So, swapping them in Y we get another chameleon Y 1
with d� pX; Y 1q � d� pX; Y q � 1.

Pro ceeding in this manner, we may change Y to X in d� pX; Y q steps.

Using this fact, one can show that the estimate in the problem statement is sharp for all n ¥ 2.

(For n � 1 it is not sharp, since any p ermutation of three letters can b e changed to an opp osite one in

no less than three swaps.) We outline the pro of b elow.

For any k ¥ 0, de�ne

X 2k � abc abc : : : abclooooooomooooooon
3k letters

cba cba : : : cbalooooooomooooooon
3k letters

and X 2k� 3 � abc abc : : : abclooooooomooooooon
3k letters

abc bca cab cba cba : : : cbalooooooomooooooon
3k letters

:

We claim that for every n ¥ 2 and every chameleon Y , we have d� pX n ; Y q ¤
P
3n2{2

T
. This will mean

that for every n ¥ 2 the numb er 3n2{2 in the problem statement cannot b e changed by any numb er

larger than

P
3n2{2

T
.

For any distinct letters u; v P ta; b; cu and any two chameleons X and Y , we de�ne d�
u;v pX; Y q as

the numb er of pX; Y q-inversions ps; tq such that s and t are instances of u and v (in any of the two

p ossible orders). Then d� pX; Y q � d�
a;bpX; Y q � d�

b;cpX; Y q � d�
c;apX; Y q.
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We start with the case when n � 2k is even; denote X � X 2k . We show that d�
a;bpX; Y q ¤ 2k2

for any chameleon Y ; this yields the required estimate. Pro ceed by the induction on k with the trivial

base case k � 0. To p erform the induction step, notice that d�
a;bpX; Y q is indeed the minimal numb er of

swaps needed to change Yc into X c . One may show that moving a1 and a2k in Y onto the �rst and the

last p ositions in Y , resp ectively, takes at most 2k swaps, and that subsequent moving b1 and b2k onto

the second and the second last p ositions takes at most 2k � 2 swaps. After p erforming that, one may

delete these letters from b oth X c and Yc and apply the induction hyp othesis; so X c can b e obtained

from Yc using at most 2pk � 1q2 � 2k � p 2k � 2q � 2k2
swaps, as required.

If n � 2k � 3 is o dd, the pro of is similar but more technically involved. Namely, we claim that

d�
a;bpX 2k� 3; Yq ¤ 2k2 � 6k � 5 for any chameleon Y , and that the equality is achieved only if Yc �

bb : : : b aa : : : a. The pro of pro ceeds by a similar induction, with some care taken of the base case, as

well as of extracting the equality case. Similar estimates hold for d�
b;c and d�

c;a . Summing three such

estimates, we obtain

d� pX 2k� 3; Yq ¤ 3p2k2 � 6k � 5q �
R

3n2

2

V
� 1;

which is by 1 more than we need. But the equality could b e achieved only if Yc � bb : : : b aa : : : a
and, similarly, Yb � aa : : : a cc : : : c and Ya � cc : : : c bb : : : b. Since these three equalities cannot hold

simultaneously, the pro of is �nished.



38 IMO 2017, Rio de Janeiro

C3.

Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In

each move, Sir Alex is allowed to p erform exactly one of the following two op erations:

(1) Cho ose any numb er of the form 2j
, where j is a non-negative integer, and put it into an

empty cell.

(2) Cho ose two (not necessarily adjacent) cells with the same numb er in them; denote that

numb er by 2j
. Replace the numb er in one of the cells with 2j � 1

and erase the numb er in

the other cell.

At the end of the game, one cell contains the numb er 2n
, where n is a given p ositive integer,

while the other cells are empty. Determine the maximum numb er of moves that Sir Alex could

have made, in terms of n .

(Thailand)

Answer: 2
° 8

j � 0

� n
j

�
� 1:

Solution 1. We will solve a more general problem, replacing the row of 9 cells with a row of k
cells, where k is a p ositive integer. Denote by mpn; kq the maximum p ossible numb er of moves

Sir Alex can make starting with a row of k empty cells, and ending with one cell containing

the numb er 2n
and all the other k � 1 cells empty. Call an op eration of typ e (1) an insertion ,

and an op eration of typ e (2) a merge .

Only one move is p ossible when k � 1, so we have mpn; 1q � 1. From now on we consider

k ¥ 2, and we may assume Sir Alex's last move was a merge. Then, just b efore the last move,

there were exactly two cells with the numb er 2n� 1
, and the other k � 2 cells were empty.

Paint one of those numb ers 2n� 1
blue, and the other one red. Now trace back Sir Alex's

moves, always painting the numb ers blue or red following this rule: if a and b merge into c,

paint a and b with the same color as c. Notice that in this backward pro cess new numb ers are

pro duced only by reversing merges, since reversing an insertion simply means deleting one of

the numb ers. Therefore, all numb ers app earing in the whole pro cess will receive one of the two

colors.

Sir Alex's �rst move is an insertion. Without loss of generality, assume this �rst numb er

inserted is blue. Then, from this p oint on, until the last move, there is always at least one cell

with a blue numb er.

Besides the last move, there is no move involving a blue and a red numb er, since all merges

involves numb ers with the same color, and insertions involve only one numb er. Call an insertion

of a blue numb er or merge of two blue numb ers a blue move , and de�ne a red move analogously.

The whole sequence of blue moves could b e rep eated on another row of k cells to pro duce

one cell with the numb er 2n� 1
and all the others empty, so there are at most mpn � 1; kq blue

moves.

Now we lo ok at the red moves. Since every time we p erform a red move there is at least

one cell o ccupied with a blue numb er, the whole sequence of red moves could b e rep eated on a

row of k � 1 cells to pro duce one cell with the numb er 2n� 1
and all the others empty, so there

are at most mpn � 1; k � 1q red moves. This proves that

mpn; kq ¤ mpn � 1; kq � mpn � 1; k � 1q � 1:

On the other hand, we can start with an empty row of k cells and p erform mpn � 1; kq
moves to pro duce one cell with the numb er 2n� 1

and all the others empty, and after that

p erform mpn � 1; k � 1q moves on those k � 1 empty cells to pro duce the numb er 2n� 1
in one

of them, leaving k � 2 empty. With one more merge we get one cell with 2n
and the others

empty, proving that

mpn; kq ¥ mpn � 1; kq � mpn � 1; k � 1q � 1:



Shortlisted problems � solutions 39

It follows that

mpn; kq � mpn � 1; kq � mpn � 1; k � 1q � 1; (1)

for n ¥ 1 and k ¥ 2.

If k � 1 or n � 0, we must insert 2n
on our �rst move and immediately get the �nal

con�guration, so mp0; kq � 1 and mpn; 1q � 1, for n ¥ 0 and k ¥ 1. These initial values,

together with the recurrence relation (1), determine mpn; kq uniquely.

Finally, we show that

mpn; kq � 2
k� 1¸

j � 0

�
n
j



� 1; (2)

for all integers n ¥ 0 and k ¥ 1.

We use induction on n . Since mp0; kq � 1 for k ¥ 1, (2) is true for the base case. We make

the induction hyp othesis that (2) is true for some �xed p ositive integer n and all k ¥ 1. We

have mpn � 1; 1q � 1 � 2
� n� 1

0

�
� 1, and for k ¥ 2 the recurrence relation (1) and the induction

hyp othesis give us

mpn � 1; kq � mpn; kq � mpn; k � 1q � 1 � 2
k� 1¸

j � 0

�
n
j



� 1 � 2

k� 2¸

j � 0

�
n
j



� 1 � 1

� 2
k� 1¸

j � 0

�
n
j



� 2

k� 1¸

j � 0

�
n

j � 1



� 1 � 2

k� 1¸

j � 0

��
n
j



�

�
n

j � 1




� 1 � 2

k� 1¸

j � 0

�
n � 1

j



� 1;

which completes the pro of.

Comment 1. After deducing the recurrence relation (1) , it may b e convenient to homogenize the

recurrence relation by de�ning hpn; kq � mpn; kq � 1. We get the new relation

hpn; kq � hpn � 1; kq � hpn � 1; kq; (3)

for n ¥ 1 and k ¥ 2, with initial values hp0; kq � hpn; 1q � 2, for n ¥ 0 and k ¥ 1.

This may help one to guess the answer, and also with other approaches like the one we develop

next.

Comment 2. We can use a generating function to �nd the answer without guessing. We work with

the homogenized recurrence relation (3). De�ne hpn; 0q � 0 so that (3) is valid for k � 1 as well. Now

we set up the generating function f px; yq �
°

n;k ¥ 0 hpn; kqxn yk
. Multiplying the recurrence relation (3)

by xnyk
and summing over n; k ¥ 1, we get

¸

n;k ¥ 1

hpn; kqxn yk � x
¸

n;k ¥ 1

hpn � 1; kqxn� 1yk � xy
¸

n;k ¥ 1

hpn � 1; k � 1qxn� 1yk� 1:

Completing the missing terms leads to the following equation on f px; yq:

f px; yq �
¸

n¥ 0

hpn; 0qxn �
¸

k¥ 1

hp0; kqyk � xf px; yq � x
¸

n¥ 0

hpn; 0qxn � xyf px; yq:

Substituting the initial values, we obtain

f px; yq �
2y

1 � y
�

1
1 � xp1 � yq

:

Developing as a p ower series, we get

f px; yq � 2
¸

j ¥ 1

yj �
¸

n¥ 0

p1 � yqnxn :
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The co e�cient of xn
in this p ower series is

2
¸

j ¥ 1

yj � p1 � yqn � 2
¸

j ¥ 1

yj �
¸

i ¥ 0

�
n
i



yi ;

and extracting the co e�cient of yk
in this last expression we �nally obtain the value for hpn; kq,

hpn; kq � 2
k� 1¸

j � 0

�
n
j



:

This proves that

mpn; kq � 2
k� 1¸

j � 0

�
n
j



� 1:

The generating function approach also works if applied to the non-homogeneous recurrence rela-

tion (1) , but the computations are less straightforward.

Solution 2. De�ne merges and insertions as in Solution 1. After each move made by Sir Alex

we compute the numb er N of empty cells, and the sum S of all the numb ers written in the

cells. Insertions always increase S by some p ower of 2, and increase N exactly by 1. Merges do

not change S and decrease N exactly by 1. Since the initial value of N is 0 and its �nal value

is 1, the total numb er of insertions exceeds that of merges by exactly one. So, to maximize the

numb er of moves, we need to maximize the numb er of insertions.

We will need the following lemma.

Lemma. If the binary representation of a p ositive integer A has d nonzero digits, then A cannot

b e represented as a sum of fewer than d p owers of 2. Moreover, any representation of A as a

sum of d p owers of 2 must coincide with its binary representation.

Proof. Let s b e the minimum numb er of summands in all p ossible representations of A as sum

of p owers of 2. Supp ose there is such a representation with s summands, where two of the

summands are equal to each other. Then, replacing those two summands with the result of

their sum, we obtain a representation with fewer than s summands, which is a contradiction.

We deduce that in any representation with s summands, the summands are all distinct, so any

such representation must coincide with the unique binary representation of A , and s � d. l

Now we split the solution into a sequence of claims.

Claim 1. After every move, the numb er S is the sum of at most k � 1 distinct p owers of 2.

Proof. If S is the sum of k (or more) distinct p owers of 2, the Lemma implies that the k cells

are �lled with these numb ers. This is a contradiction since no more merges or insertions can

b e made. l

Let Apn; k � 1q denote the set of all p ositive integers not exceeding 2n
with at most k � 1

nonzero digits in its base 2 representation. Since every insertion increases the value of S, by

Claim 1, the total numb er of insertions is at most |Apn; k � 1q|. We pro ceed to prove that it is

p ossible to achieve this numb er of insertions.

Claim 2. Let Apn; k � 1q � t a1; a2; : : : ; am u, with a1   a2   � � �   am . If after some of Sir Alex's

moves the value of S is aj , with j P t1; 2; : : : ; m � 1u, then there is a sequence of moves after

which the value of S is exactly aj � 1 .

Proof. Supp ose S � aj . Performing all p ossible merges, we eventually get di�erent p owers of 2
in all nonempty cells. After that, by Claim 1 there will b e at least one empty cell, in which we

want to insert aj � 1 � aj . It remains to show that aj � 1 � aj is a p ower of 2.

For this purp ose, we notice that if aj has less than k � 1 nonzero digits in base 2 then

aj � 1 � aj � 1. Otherwise, we have aj � 2bk � 1 � � � � � 2b2 � 2b1
with b1   b2   � � �   bk� 1 . Then,

adding any numb er less than 2b1
to aj will result in a numb er with more than k � 1 nonzero
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binary digits. On the other hand, aj � 2b1
is a sum of k p owers of 2, not all distinct, so by the

Lemma it will b e a sum of less then k distinct p owers of 2. This means that aj � 1 � aj � 2b1
,

completing the pro of. l

Claims 1 and 2 prove that the maximum numb er of insertions is |Apn; k � 1q|. We now

compute this numb er.

Claim 3. |Apn; k � 1q| �
° k� 1

j � 0

� n
j

�
.

Proof. The numb er 2n
is the only element of Apn; k � 1q with n � 1 binary digits. Any other

element has at most n binary digits, at least one and at most k � 1 of them are nonzero (so

they are ones). For each j P t1; 2; : : : ; k � 1u, there are

� n
j

�
such elements with exactly j binary

digits equal to one. We conclude that |Apn; k � 1q| � 1 �
° k� 1

j � 1

� n
j

�
�

° k� 1
j � 0

� n
j

�
. l

Recalling that the numb er of insertions exceeds that of merges by exactly 1, we deduce that

the maximum numb er of moves is 2
° k� 1

j � 0

� n
j

�
� 1.
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C4.

Let N ¥ 2 b e an integer. N pN � 1q so ccer players, no two of the same height, stand

in a row in some order. Coach Ralph wants to remove N pN � 1q p eople from this row so that

in the remaining row of 2N players, no one stands b etween the two tallest ones, no one stands

b etween the third and the fourth tallest ones, . . . , and �nally no one stands b etween the two

shortest ones. Show that this is always p ossible.

(Russia)

Solution 1. Split the row into N blo cks with N � 1 consecutive p eople each. We will show

how to remove N � 1 p eople from each blo ck in order to satisfy the coach's wish.

First, construct a pN � 1q � N matrix where x i;j is the height of the i th

tallest p erson of

the j th

blo ck�in other words, each column lists the heights within a single blo ck, sorted in

decreasing order from top to b ottom.

We will reorder this matrix by rep eatedly swapping whole columns. First, by column p er-

mutation, make sure that x2;1 � maxt x2;i : i � 1; 2; : : : ; Nu (the �rst column contains the

largest height of the second row). With the �rst column �xed, p ermute the other ones so that

x3;2 � maxt x3;i : i � 2; : : : ; Nu (the second column contains the tallest p erson of the third row,

�rst column excluded). In short, at step k ( k � 1; 2; : : : ; N � 1), we p ermute the columns from

k to N so that xk� 1;k � maxt x i;k : i � k; k � 1; : : : ; Nu, and end up with an array like this:

x 1;1 x1;2 x1;3 � � � x1;N � 1 x1;N¡ ¡ ¡ ¡ ¡ ¡ ¡

x 2;1 ¡¡¡ x 2;2 x2;3 � � � x2;N � 1 x2;N¡ ¡ ¡ ¡ ¡ ¡ ¡

x3;1 x 3;2 ¡¡¡ x 3;3 � � � x3;N � 1 x3;N¡ ¡ ¡ ¡ ¡ ¡ ¡

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

¡ ¡ ¡ ¡ ¡ ¡ ¡

xN; 1 xN; 2 xN; 3 � � � x N;N � 1 ¡¡¡ x N;N¡ ¡ ¡ ¡ ¡ ¡ ¡

xN � 1;1 xN � 1;2 xN � 1;3� � � xN � 1;N � 1 x N � 1;N

Now we make the b old choice: from the original row of p eople, remove everyone but those

with heights

x1;1 ¡ x2;1 ¡ x2;2 ¡ x3;2 ¡ � � � ¡ xN;N � 1 ¡ xN;N ¡ xN � 1;N p�q

Of course this height order p�q is not necessarily their spatial order in the new row. We now

need to convince ourselves that each pair pxk;k ; xk� 1;kq remains spatially together in this new

row. But xk;k and xk� 1;k b elong to the same column/blo ck of consecutive N � 1 p eople; the

only p eople that could p ossibly stand b etween them were also in this blo ck, and they are all

gone.

Solution 2. Split the p eople into N groups by height : group G1 has the N � 1 tallest ones,

group G2 has the next N � 1 tallest, and so on, up to group GN with the N � 1 shortest p eople.

Now scan the original row from left to right, stopping as so on as you have scanned two

p eople (consecutively or not) from the same group, say, Gi . Since we have N groups, this must

happ en b efore or at the pN � 1qth

p erson of the row. Cho ose this pair of p eople, removing all

the other p eople from the same group Gi and also all p eople that have b een scanned so far.

The only p eople that could separate this pair's heights were in group Gi (and they are gone);

the only p eople that could separate this pair's p ositions were already scanned (and they are

gone to o).

We are now left with N � 1 groups (all except Gi ). Since each of them lost at most one

p erson, each one has at least N unscanned p eople left in the row. Rep eat the scanning pro cess

from left to right, cho osing the next two p eople from the same group, removing this group and
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everyone scanned up to that p oint. Once again we end up with two p eople who are next to

each other in the remaining row and whose heights cannot b e separated by anyone else who

remains (since the rest of their group is gone). After picking these 2 pairs, we still have N � 2
groups with at least N � 1 p eople each.

If we rep eat the scanning pro cess a total of N times, it is easy to check that we will end

up with 2 p eople from each group, for a total of 2N p eople remaining. The height order is

guaranteed by the grouping, and the scanning construction from left to right guarantees that

each pair from a group stand next to each other in the �nal row. We are done.

Solution 3. This is essentially the same as solution 1, but presented inductively. The essence

of the argument is the following lemma.

Lemma. Assume that we have N disjoint groups of at least N � 1 p eople in each, all p eople

have distinct heights. Then one can cho ose two p eople from each group so that among the

chosen p eople, the two tallest ones are in one group, the third and the fourth tallest ones are

in one group, . . . , and the two shortest ones are in one group.

Proof. Induction on N ¥ 1; for N � 1, the statement is trivial.

Consider now N groups G1; : : : ; GN with at least N � 1 p eople in each for N ¥ 2. Enumerate

the p eople by 1; 2; : : : ; NpN � 1q according to their height, say, from tallest to shortest. Find

the least s such that two p eople among 1; 2; : : : ; s are in one group (without loss of generality,

say this group is GN ). By the minimality of s, the two mentioned p eople in GN are s and some

i   s.

Now we cho ose p eople i and s in GN , forget ab out this group, and remove the p eople

1; 2; : : : ; s from G1; : : : ; GN � 1 . Due to minimality of s again, each of the obtained groups

G1
1; : : : ; G1

N � 1 contains at least N p eople. By the induction hyp othesis, one can cho ose a pair

of p eople from each of G1
1; : : : ; G1

N � 1 so as to satisfy the required conditions. Since all these

p eople have numb ers greater than s, addition of the pair ps; iq from GN do es not violate these

requirements. l

To solve the problem, it su�ces now to split the row into N contiguous groups with N � 1
p eople in each and apply the Lemma to those groups.

Comment 1. One can identify each p erson with a pair of indices pp; hq ( p; h P t1; 2; : : : ; N pN � 1qu)

so that the pth

p erson in the row (say, from left to right) is the h th

tallest p erson in the group. Say

that pa; bq separates px1; y1q and px2; y2q whenever a is strictly b etween x1 and y1 , or b is strictly

b etween x2 and y2 . So the coach wants to pick 2N p eople ppi ; hi qpi � 1; 2; : : : ; 2N q such that no chosen

p erson separates pp1; h1q from pp2; h2q, no chosen p erson separates pp3; h3q and pp4; h4q, and so on.

This formulation reveals a duality b etween p ositions and heights. In that sense, solutions 1 and 2 are

dual of each other.

Comment 2. The numb er N pN � 1q is sharp for N � 2 and N � 3, due to arrangements 1; 5; 3; 4; 2
and 1; 10; 6; 4; 3; 9; 5; 8; 7; 2; 11.
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C5.

A hunter and an invisible rabbit play a game in the Euclidean plane. The hunter's

starting p oint H0 coincides with the rabbit's starting p oint R0 . In the n th

round of the game

( n ¥ 1), the following happ ens.

(1) First the invisible rabbit moves secretly and unobserved from its current p oint Rn� 1 to

some new p oint Rn with Rn� 1Rn � 1.

(2) The hunter has a tracking device (e.g. dog) that returns an approximate p osition R1
n of

the rabbit, so that RnR1
n ¤ 1.

(3) The hunter then visibly moves from p oint Hn� 1 to a new p oint Hn with Hn� 1Hn � 1.

Is there a strategy for the hunter that guarantees that after 109
such rounds the distance

b etween the hunter and the rabbit is b elow 100?

(Austria)

Answer: There is no such strategy for the hunter. The rabbit �wins".

Solution. If the answer were �yes", the hunter would have a strategy that would �work", no

matter how the rabbit moved or where the radar pings R1
n app eared. We will show the opp osite:

with bad luck from the radar pings, there is no strategy for the hunter that guarantees that

the distance stays b elow 100 in 109
rounds.

So, let dn b e the distance b etween the hunter and the rabbit after n rounds. Of course, if

dn ¥ 100 for any n   109
, the rabbit has won � it just needs to move straight away from the

hunter, and the distance will b e kept at or ab ove 100 thereon.

We will now show that, while dn   100, whatever given strategy the hunter follows, the

rabbit has a way of increasing d2
n by at least

1
2 every 200 rounds (as long as the radar pings are

lucky enough for the rabbit). This way, d2
n will reach 104

in less than 2� 104 � 200� 4� 106   109

rounds, and the rabbit wins.

Supp ose the hunter is at Hn and the rabbit is at Rn . Supp ose even that the rabbit reveals

its p osition at this moment to the hunter (this allows us to ignore all information from previous

radar pings). Let r b e the line HnRn , and Y1 and Y2 b e p oints which are 1 unit away from r
and 200 units away from Rn , as in the �gure b elow.

r dn

Hn Rn

200

200

200� dn

Z

1

1

Y1

Y2

"

y

y

R0H 0

The rabbit's plan is simply to cho ose one of the p oints Y1 or Y2 and hop 200 rounds straight

towards it. Since all hops stay within 1 distance unit from r , it is p ossible that all radar pings

stay on r . In particular, in this case, the hunter has no way of knowing whether the rabbit

chose Y1 or Y2 .

Lo oking at such pings, what is the hunter going to do? If the hunter's strategy tells him to

go 200 rounds straight to the right, he ends up at p oint H 1
in the �gure. Note that the hunter

do es not have a b etter alternative! Indeed, after these 200 rounds he will always end up at

a p oint to the left of H 1
. If his strategy to ok him to a p oint ab ove r , he would end up even

further from Y2 ; and if his strategy to ok him b elow r , he would end up even further from Y1 .

In other words, no matter what strategy the hunter follows, he can never b e sure his distance

to the rabbit will b e less than y def � H 1Y1 � H 1Y2 after these 200 rounds.

To estimate y2
, we take Z as the midp oint of segment Y1Y2 , we take R1

as a p oint 200 units

to the right of Rn and we de�ne " � ZR1
(note that H 1R1 � dn ). Then
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y2 � 1 � p H 1Zq2 � 1 � p dn � "q2

where

" � 200� RnZ � 200�
?

2002 � 1 �
1

200�
?

2002 � 1
¡

1
400

:

In particular, "2 � 1 � 400" , so

y2 � d2
n � 2"dn � "2 � 1 � d2

n � "p400� 2dnq:

Since " ¡ 1
400 and we assumed dn   100, this shows that y2 ¡ d2

n � 1
2 . So, as we claimed, with this

list of radar pings, no matter what the hunter do es, the rabbit might achieve d2
n� 200 ¡ d2

n � 1
2 .

The wabbit wins.

Comment 1. Many di�erent versions of the solution ab ove can b e found by replacing 200 with some

other numb er N for the numb er of hops the rabbit takes b etween reveals. If this is done, we have:

" � N �
a

N 2 � 1 ¡
1

N �
?

N 2 � 1
¡

1
2N

and

"2 � 1 � 2N";

so, as long as N ¡ dn , we would �nd

y2 � d2
n � "p2N � 2dn q ¡ d2

n �
N � dn

N
:

For example, taking N � 101 is already enough�the squared distance increases by at least

1
101 every

101 rounds, and 1012 � 104 � 1:0201� 108   109
rounds are enough for the rabbit. If the statement is

made sharp er, some such versions might not work any longer.

Comment 2. The original statement asked whether the distance could b e kept under 1010
in 10100

rounds.
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C6.

Let n ¡ 1 b e an integer. An n � n � n cub e is comp osed of n3
unit cub es. Each

unit cub e is painted with one color. For each n � n � 1 b ox consisting of n2
unit cub es (of any

of the three p ossible orientations), we consider the set of the colors present in that b ox (each

color is listed only once). This way, we get 3n sets of colors, split into three groups according

to the orientation. It happ ens that for every set in any group, the same set app ears in b oth

of the other groups. Determine, in terms of n , the maximal p ossible numb er of colors that are

present.

(Russia)

Answer: The maximal numb er is

npn� 1qp2n� 1q
6 .

Solution 1. Call a n � n � 1 b ox an x -box , a y -box , or a z-box , according to the direction of

its short side. Let C b e the numb er of colors in a valid con�guration. We start with the upp er

b ound for C .

Let C1 , C2 , and C3 b e the sets of colors which app ear in the big cub e exactly once, exactly

twice, and at least thrice, resp ectively. Let M i b e the set of unit cub es whose colors are in Ci ,

and denote ni � | M i | .

Consider any x -b ox X , and let Y and Z b e a y - and a z-b ox containing the same set of

colors as X do es.

Claim. 4|X X M1| � | X X M2| ¤ 3n � 1.

Proof. We distinguish two cases.

Case 1: X X M1 � ? .

A cub e from X X M1 should app ear in all three b oxes X , Y , and Z , so it should lie in

X X Y X Z . Thus X X M1 � X X Y X Z and |X X M1| � 1.

Consider now the cub es in X X M2 . There are at most 2pn � 1q of them lying in X X Y or

X X Z (b ecause the cub e from X X Y X Z is in M1 ). Let a b e some other cub e from X X M2 .

Recall that there is just one other cub e a1
sharing a color with a. But b oth Y and Z should

contain such cub e, so a1 P Y X Z (but a1 RX X Y X Z ). The map a ÞÑa1
is clearly injective,

so the numb er of cub es a we are interested in do es not exceed |pY X Zq zX | � n � 1. Thus

|X X M2| ¤ 2pn� 1q�p n� 1q � 3pn� 1q, and hence 4|X X M1| � | X X M2| ¤ 4� 3pn� 1q � 3n� 1.

Case 2: X X M1 � ? .

In this case, the same argument applies with several changes. Indeed, X X M2 contains

at most 2n � 1 cub es from X X Y or X X Z . Any other cub e a in X X M2 corresp onds to

some a1 P Y X Z (p ossibly with a1 P X ), so there are at most n of them. All this results in

|X X M2| ¤ p2n � 1q � n � 3n � 1, which is even b etter than we need (by the assumptions of

our case). l
Summing up the inequalities from the Claim over all x -b oxes X , we obtain

4n1 � n2 ¤ np3n � 1q:

Obviously, we also have n1 � n2 � n3 � n3
.

Now we are prepared to estimate C . Due to the de�nition of the M i , we have ni ¥ i |Ci | , so

C ¤ n1 �
n2

2
�

n3

3
�

n1 � n2 � n3

3
�

4n1 � n2

6
¤

n3

3
�

3n2 � n
6

�
npn � 1qp2n � 1q

6
:

It remains to present an example of an appropriate coloring in the ab ove-mentioned numb er

of colors. For each color, we present the set of all cub es of this color. These sets are:

1. n singletons of the form Si � tp i; i; i qu (with 1 ¤ i ¤ n );

2. 3
� n

2

�
doubletons of the forms D 1

i;j � tp i; j; j q; pj; i; i qu, D 2
i;j � tp j; i; j q; pi; j; i qu, and D 3

i;j �
tpj; j; i q; pi; i; j qu (with 1 ¤ i   j ¤ n );
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3. 2
� n

3

�
triplets of the form Ti;j;k � tp i; j; k q; pj; k; i q; pk; i; j qu (with 1 ¤ i   j   k ¤ n or

1 ¤ i   k   j ¤ n ).

One may easily see that the i th

b oxes of each orientation contain the same set of colors, and

that

n �
3npn � 1q

2
�

npn � 1qpn � 2q
3

�
npn � 1qp2n � 1q

6
colors are used, as required.

Solution 2. We will approach a new version of the original problem. In this new version, each

cub e may have a color, or b e invisible (not b oth). Now we make sets of colors for each n � n � 1
b ox as b efore (where �invisible" is not considered a color) and group them by orientation, also

as b efore. Finally, we require that, for every non-empty set in any group, the same set must

app ear in the other 2 groups. What is the maximum numb er of colors present with these new

requirements?

Let us call strange a big n� n� n cub e whose painting scheme satis�es the new requirements,

and let D b e the numb er of colors in a strange cub e. Note that any cub e that satis�es the

original requirements is also strange, so maxpDq is an upp er b ound for the original answer.

Claim. D ¤ npn� 1qp2n� 1q
6 .

Proof. The pro of is by induction on n . If n � 1, we must paint the cub e with at most 1 color.

Now, pick a n � n � n strange cub e A , where n ¥ 2. If A is completely invisible, D � 0 and

we are done. Otherwise, pick a non-empty set of colors S which corresp onds to, say, the b oxes

X , Y and Z of di�erent orientations.

Now �nd all cub es in A whose colors are in S and make them invisible. Since X , Y
and Z are now completely invisible, we can throw them away and fo cus on the remaining

pn � 1q � p n � 1q � p n � 1q cub e B . The sets of colors in all the groups for B are the same

as the sets for A , removing exactly the colors in S , and no others! Therefore, every nonempty

set that app ears in one group for B still shows up in all p ossible orientations (it is p ossible

that an empty set of colors in B only matched X , Y or Z b efore these were thrown away, but

rememb er we do not require empty sets to match anyway). In summary, B is also strange.

By the induction hyp othesis, we may assume that B has at most

pn� 1qnp2n� 1q
6 colors. Since

there were at most n2
di�erent colors in S , we have that A has at most

pn� 1qnp2n� 1q
6 � n2 �

npn� 1qp2n� 1q
6 colors. l

Finally, the construction in the previous solution shows a painting scheme (with no invisible

cub es) that reaches this maximum, so we are done.
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C7.

For any �nite sets X and Y of p ositive integers, denote by f X pkq the k th

smallest

p ositive integer not in X , and let

X � Y � X Y t f X pyq: y PYu:

Let A b e a set of a ¡ 0 p ositive integers, and let B b e a set of b ¡ 0 p ositive integers. Prove

that if A � B � B � A , then

A � pA � � � � � p A � pA � Aqq: : : qlooooooooooooooooooomooooooooooooooooooon
A app ears b times

� B � pB � � � � � p B � pB � Bqq: : : qlooooooooooooooooooomooooooooooooooooooon
B app ears a times

:

(U.S.A.)

Solution 1. For any function g: Z¡ 0 Ñ Z¡ 0 and any subset X € Z¡ 0 , we de�ne gpX q �
t gpxq: x P X u. We have that the image of f X is f X pZ¡ 0q � Z¡ 0 z X . We now show a general

lemma ab out the op eration � , with the goal of showing that � is asso ciative.

Lemma 1. Let X and Y b e �nite sets of p ositive integers. The functions f X � Y and f X � f Y are

equal.

Proof. We have

f X � Y pZ¡ 0q � Z¡ 0zpX � Yq � p Z¡ 0zX qzf X pYq � f X pZ¡ 0qzf X pYq � f X pZ¡ 0zYq � f X pf Y pZ¡ 0qq:

Thus, the functions f X � Y and f X � f Y are strictly increasing functions with the same range.

Because a strictly function is uniquely de�ned by its range, we have f X � Y � f X � f Y . l

Lemma 1 implies that � is asso ciative, in the sense that pA � Bq � C � A � pB � Cq for any

�nite sets A; B , and C of p ositive integers. We prove the asso ciativity by noting

Z¡ 0 z ppA � Bq � Cq � f pA � B q� C pZ¡ 0q � f A� B pf CpZ¡ 0qq � f A pf B pf CpZ¡ 0qqq

� f A pf B � C pZ¡ 0q � f A�p B � CqpZ¡ 0q � Z¡ 0 z pA � pB � Cqq:

In light of the asso ciativity of � , we may drop the parentheses when we write expressions

like A � pB � Cq. We also intro duce the notation

X � k � X � pX � � � � � p X � pX � X qq: : :qloooooooooooooooooooomoooooooooooooooooooon
X app ears k times

:

Our goal is then to show that A � B � B � A implies A � b � B � a
. We will do so via the following

general lemma.

Lemma 2. Supp ose that X and Y are �nite sets of p ositive integers satisfying X � Y � Y � X
and |X | � | Y | . Then, we must have X � Y .

Proof. Assume that X and Y are not equal. Let s b e the largest numb er in exactly one of

X and Y . Without loss of generality, say that s P X z Y . The numb er f X psq counts the sth

numb er not in X , which implies that

f X psq � s �
�
�X X t 1; 2; : : : ; f X psqu

�
�: (1)

Since f X psq ¥ s, we have that

 
f X psq � 1; f X psq � 2; : : :

(
X X �

 
f X psq � 1; f X psq � 2; : : :

(
X Y;

which, together with the assumption that |X | � | Y | , gives

�
�X X t 1; 2; : : : ; f X psqu

�
� �

�
�Y X t 1; 2; : : : ; f X psqu

�
�: (2)
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Now consider the equation

t �
�
�Y X t 1; 2; : : : ; tu

�
� � s:

This equation is satis�ed only when t P
�
f Y psq; f Y ps � 1q

�
, b ecause the left hand side counts

the numb er of elements up to t that are not in Y . We have that the value t � f X psq satis�es

the ab ove equation b ecause of (1) and (2). Furthermore, since f X psq RX and f X psq ¥ s, we

have that f X psq RY due to the maximality of s. Thus, by the ab ove discussion, we must have

f X psq � f Y psq.

Finally, we arrive at a contradiction. The value f X psq is neither in X nor in f X pYq, b ecause

s is not in Y by assumption. Thus, f X psq RX � Y . However, since s PX , we have f Y psq PY � X ,

a contradiction. l
We are now ready to �nish the pro of. Note �rst of all that |A � b| � ab � | B � a| . Moreover,

since A � B � B � A , and � is asso ciative, it follows that A � b � B � a � B � a � A � b
. Thus, by

Lemma 2, we have A � b � B � a
, as desired.

Comment 1. Taking A � X � k
and B � X � l

generates many non-trivial examples where A� B � B � A .

There are also other examples not of this form. For example, if A � t 1; 2; 4u and B � t 1; 3u, then

A � B � t 1; 2; 3; 4; 6u � B � A .

Solution 2. We will use Lemma 1 from Solution 1. Additionally, let X � k
b e de�ned as in

Solution 1. If X and Y are �nite sets, then

f X � f Y ðñ f X pZ¡ 0q � f Y pZ¡ 0q ðñ p Z¡ 0 z X q � p Z¡ 0 z Yq ðñ X � Y; (3)

where the �rst equivalence is b ecause f X and f Y are strictly increasing functions, and the second

equivalence is b ecause f X pZ¡ 0q � Z¡ 0 z X and f Y pZ¡ 0q � Z¡ 0 z Y .

Denote g � f A and h � f B . The given relation A � B � B � A is equivalent to f A� B � f B � A

b ecause of (3), and by Lemma 1 of the �rst solution, this is equivalent to g� h � h� g. Similarly,

the required relation A � b � B � a
is equivalent to gb � ha

. We will show that

gbpnq � hapnq (4)

for all n PZ¡ 0 , which su�ces to solve the problem.

To start, we claim that (4) holds for all su�ciently large n . Indeed, let p and q b e the

maximal elements of A and B , resp ectively; we may assume that p ¥ q. Then, for every n ¥ p
we have gpnq � n � a and hpnq � n � b, whence gbpnq � n � ab� hapnq, as was claimed.

In view of this claim, if (4) is not identically true, then there exists a maximal s with gbpsq �
hapsq. Without loss of generality, we may assume that gpsq � s, for if we had gpsq � hpsq � s,

then s would satisfy (4). As g is increasing, we then have gpsq ¡ s, so (4) holds for n � gpsq.

But then we have

gpgbpsqq � gb� 1psq � gbpnq � hapnq � hapgpsqq � gphapsqq;

where the last equality holds in view of g � h � h � g. By the injectivity of g, the ab ove

equality yields gbpsq � hapsq, which contradicts the choice of s. Thus, we have proved that (4)

is identically true on Z¡ 0 , as desired.

Comment 2. We present another pro of of Lemma 2 of the �rst solution.

Let x � | X | � | Y | . Say that u is the smallest numb er in X and v is the smallest numb er in Y ;

assume without loss of generality that u ¤ v .

Let T b e any �nite set of p ositive integers, and de�ne t � | T | . Enumerate the elements of X as

x1   x2   � � �   xn . De�ne Sm � f pT � X �p m � 1qqpX q, and enumerate its elements sm;1   sm;2   � � �  
sm;n . Note that the Sm are pairwise disjoint; indeed, if we have m   m1

, then

Sm € T � X � m € T � X �p m1� 1q
and Sm1 � p T � X � m1

q z pT � X �p m1� 1qq

We claim the following statement, which essentially says that the Sm are eventually linear translates

of each other:
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Claim. For every i , there exists some mi and ci such that for all m ¡ mi , we have that sm;i � t � mn � ci .

Furthermore, the ci do not dep end on the choice of T .

First, we show that this claim implies Lemma 2. We may cho ose T � X and T � Y . Then, there

is some m1
such that for all m ¥ m1

, we have

f X � m pX q � f pY � X �p m � 1qqpX q: (5)

Because u is the minimum element of X , v is the minimum element of Y , and u ¤ v , we have that

�
8¤

m� m1

f X � m pX q

�

Y X � m1
�

�
8¤

m� m1

f pY � X �p m � 1qqpX q

�

Y
�
Y � X �p m1� 1q� � t u; u � 1; : : : u;

and in b oth the �rst and second expressions, the unions are of pairwise distinct sets. By (5), we obtain

X � m1
� Y � X �p m1� 1q

. Now, b ecause X and Y commute, we get X � m1
� X �p m1� 1q � Y , and so X � Y .

We now prove the claim.

Proof of the claim. We induct downwards on i , �rst proving the statement for i � n , and so on.

Assume that m is chosen so that all elements of Sm are greater than all elements of T (which is

p ossible b ecause T is �nite). For i � n , we have that sm;n ¡ sk;n for every k   m . Thus, all pm � 1qn
numb ers of the form sk;u for k   m and 1 ¤ u ¤ n are less than sm;n . We then have that sm;n is the

ppm � 1qn � xnqth
numb er not in T , which is equal to t � p m � 1qn � xn . So we may cho ose cn � xn � n ,

which do es not dep end on T , which proves the base case for the induction.

For i   n , we have again that all elements sm;j for j   i and sp;i for p   m are less than sm;i ,

so sm;i is the ppm � 1qi � x i qth
element not in T or of the form sp;j for j ¡ i and p   m . But by

the inductive hyp othesis, each of the sequences sp;j is eventually p erio dic with p erio d n , and thus the

sequence sm;i such must b e as well. Since each of the sequences sp;j � t with j ¡ i eventually do not

dep end on T , the sequence sm;i � t eventually do es not dep end on T either, so the inductive step is

complete. This proves the claim and thus Lemma 2. l
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C8.

Let n b e a given p ositive integer. In the Cartesian plane, each lattice p oint with

nonnegative co ordinates initially contains a butter�y, and there are no other butter�ies. The

neighborhood of a lattice p oint c consists of all lattice p oints within the axis-aligned p2n � 1q �
p2n � 1q square centered at c, apart from c itself. We call a butter�y lonely , crowded , or com-

fortable , dep ending on whether the numb er of butter�ies in its neighb orho o d N is resp ectively

less than, greater than, or equal to half of the numb er of lattice p oints in N .

Every minute, all lonely butter�ies �y away simultaneously. This pro cess go es on for as

long as there are any lonely butter�ies. Assuming that the pro cess eventually stops, determine

the numb er of comfortable butter�ies at the �nal state.

(Bulgaria)

Answer: n2 � 1.

Solution. We always identify a butter�y with the lattice p oint it is situated at. For two p oints p
and q, we write p ¥ q if each co ordinate of p is at least the corresp onding co ordinate of q. Let

O b e the origin, and let Q b e the set of initially o ccupied p oints, i.e., of all lattice p oints with

nonnegative co ordinates. Let R H � tp x; 0q: x ¥ 0u and R V � tp 0; yq: y ¥ 0u b e the sets of

the lattice p oints lying on the horizontal and vertical b oundary rays of Q . Denote by N paq the

neighb orho o d of a lattice p oint a.

1. Initial observations. We call a set of lattice p oints up-right closed if its p oints stay in the

set after b eing shifted by any lattice vector pi; j q with i; j ¥ 0. Whenever the butter�ies form a

up-right closed set S , we have |N ppq X S| ¥ | N pqq X S| for any two p oints p; qPS with p ¥ q.

So, since Q is up-right closed, the set of butter�ies at any moment also preserves this prop erty.

We assume all forthcoming sets of lattice p oints to b e up-right closed.

When sp eaking of some set S of lattice p oints, we call its p oints lonely , comfortable , or

crowded with resp ect to this set (i.e., as if the butter�ies were exactly at all p oints of S ). We

call a set S € Q stable if it contains no lonely p oints. In what follows, we are interested only

in those stable sets whose complements in Q are �nite, b ecause one can easily see that only a

�nite numb er of butter�ies can �y away on each minute.

If the initial set Q of butter�ies contains some stable set S , then, clearly no butter�y of

this set will �y away. On the other hand, the set F of all butter�ies in the end of the pro cess

is stable. This means that F is the largest (with resp ect to inclusion) stable set within Q , and

we are ab out to describ e this set.

2. A description of a �nal set. The following notion will b e useful. Let U � t ~u1; ~u2; : : : ; ~udu
b e a set of d pairwise non-parallel lattice vectors, each having a p ositive x - and a negative

y -co ordinate. Assume that they are numb ered in increasing order according to slop e. We now

de�ne a U-curve to b e the broken line p0p1 : : : pd such that p0 P R V , pd P R H , and

ÝÝÝÑpi � 1pi � ~ui

for all i � 1; 2; : : : ; m (see the Figure b elow to the left).

~u1

~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2 ~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3

~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4

~u1

~u2

~u3

~u4 O

p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3

p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4

�!

�!

r 1 r 2 r 3 r 4 (k4 = 3)

~v1

~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3 ~v4

O
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Construction of U-curve Construction of D
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Now, let Kn � tp i; j q: 1 ¤ i ¤ n; � n ¤ j ¤ � 1u. Consider all the rays emerging at O and

passing through a p oint from Kn ; numb er them as r1; : : : ; rm in increasing order according to

slop e. Let A i b e the farthest from O lattice p oint in r i X Kn , set ki � | r i X Kn | , let ~vi �
ÝÝÑ
OAi ,

and �nally denote V � t ~vi : 1 ¤ i ¤ mu; see the Figure ab ove to the right. We will concentrate

on the V -curve d0d1 : : : dm ; let D b e the set of all lattice p oints p such that p ¥ p1
for some (not

necessarily lattice) p oint p1
on the V -curve. In fact, we will show that D � F .

Clearly, the V -curve is symmetric in the line y � x . Denote by D the convex hull of D .

3. We prove that the set D contains al l stable sets. Let S € Q b e a stable set (recall that

it is assumed to b e up-right closed and to have a �nite complement in Q ). Denote by S its

convex hull; clearly, the vertices of S are lattice p oints. The b oundary of S consists of two rays

(horizontal and vertical ones) along with some V� -curve for some set of lattice vectors V� .

Claim 1. For every ~vi PV , there is a ~v�
i PV� co-directed with ~v with |~v�

i | ¥ | ~v| .

Proof. Let ` b e the supp orting line of S parallel to ~vi (i.e., ` contains some p oint of S, and

the set S lies on one side of ` ). Take any p oint b P ` X S and consider N pbq. The line ` splits

the set N pbq z` into two congruent parts, one having an empty intersection with S . Hence, in

order for b not to b e lonely, at least half of the set ` X N pbq (which contains 2ki p oints) should

lie in S. Thus, the b oundary of S contains a segment ` X S with at least ki � 1 lattice p oints

(including b) on it; this segment corresp onds to the required vector ~v�
i PV� . l

Kn
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Pro of of Claim 1 Pro of of Claim 2

Claim 2. Each stable set S „ Q lies in D .

Proof. To show this, it su�ces to prove that the V� -curve lies in D , i.e., that all its vertices

do so. Let p1
b e an arbitrary vertex of the V� -curve; p1

partitions this curve into two parts, X
(b eing down-right of p) and Y (b eing up-left of p). The set V is split now into two parts: VX

consisting of those ~vi P V for which ~v�
i corresp onds to a segment in X , and a similar part VY .

Notice that the V -curve consists of several segments corresp onding to VX , followed by those

corresp onding to VY . Hence there is a vertex p of the V -curve separating VX from VY . Claim 1

now yields that p1 ¥ p, so p1 PD , as required. l

Claim 2 implies that the �nal set F is contained in D .

4. D is stable, and its comfortable points are known. Recall the de�nitions of r i ; let r 1
i b e the

ray complementary to r i . By our de�nitions, the set N pOq contains no p oints b etween the rays

r i and r i � 1 , as well as b etween r 1
i and r 1

i � 1 .

Claim 3. In the set D , all lattice p oints of the V -curve are comfortable.

Proof. Let p b e any lattice p oint of the V -curve, b elonging to some segment di di � 1 . Draw the

line ` containing this segment. Then ` X D contains exactly ki � 1 lattice p oints, all of which lie

in N ppq except for p. Thus, exactly half of the p oints in N ppq X ` lie in D . It remains to show

that all p oints of N ppq ab ove ` lie in D (recall that all the p oints b elow ` lack this prop erty).
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Notice that each vector in V has one co ordinate greater than n{2; thus the neighb orho o d

of p contains parts of at most two segments of the V -curve succeeding di di � 1 , as well as at most

two of those preceding it.

The angles formed by these consecutive segments are obtained from those formed by r j and

r 1
j � 1 (with i � 1 ¤ j ¤ i � 2) by shifts; see the Figure b elow. All the p oints in N ppq ab ove `

which could lie outside D lie in shifted angles b etween r j , r j � 1 or r 1
j , r 1

j � 1 . But those angles,

restricted to N ppq, have no lattice p oints due to the ab ove remark. The claim is proved. l

Kn

r i � 1

r i

r i +1

r i +2

r 0
i +2

r 0
i � 1

p

di

di +1

di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2di +2

Pro of of Claim 3

Claim 4. All the p oints of D which are not on the b oundary of D are crowded.

Proof. Let p PD b e such a p oint. If it is to the up-right of some p oint p1
on the curve, then the

claim is easy: the shift of N pp1q X D by

ÝÑ
p1p is still in D , and N ppq contains at least one more

p oint of D � either b elow or to the left of p. So, we may assume that p lies in a right triangle

constructed on some hyp othenuse di di � 1 . Notice here that di ; di � 1 PN ppq.

Draw a line ` k di di � 1 through p, and draw a vertical line h through di ; see Figure b elow.

Let DL and DR b e the parts of D lying to the left and to the right of h , resp ectively (p oints

of D X h lie in b oth parts).

dididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididi

di +1

p

h

`
p

di

di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1di +1

�!

Pro of of Claim 4

Notice that the vectors

ÝÑ
di p,

ÝÝÝÝÝÑ
di � 1di � 2 ,

ÝÝÝÑ
di di � 1 ,

ÝÝÝÑ
di � 1di , and

ÝÝÝÑ
pdi � 1 are arranged in non-increasing

order by slop e. This means that DL shifted by

ÝÑ
di p still lies in D , as well as DR shifted by

ÝÝÝÑ
di � 1p.

As we have seen in the pro of of Claim 3, these two shifts cover all p oints of N ppq ab ove ` , along

with those on ` to the left of p. Since N ppq contains also di and di � 1 , the p oint p is crowded.

l

Thus, we have proved that D � F , and have shown that the lattice p oints on the V -curve

are exactly the comfortable p oints of D . It remains to �nd their numb er.

Recall the de�nition of Kn (see Figure on the �rst page of the solution). Each segment di di � 1

contains ki lattice p oints di�erent from di . Taken over all i , these p oints exhaust all the lattice

p oints in the V -curve, except for d1 , and thus the numb er of lattice p oints on the V -curve is

1 �
° m

i � 1 ki . On the other hand,

° m
i � 1 ki is just the numb er of p oints in Kn , so it equals n2

.

Hence the answer to the problem is n2 � 1.
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Comment 1. The assumption that the pro cess eventually stops is unnecessary for the problem, as

one can see that, in fact, the pro cess stops for every n ¥ 1. Indeed, the pro of of Claims 3 and 4 do not

rely essentially on this assumption, and they together yield that the set D is stable. So, only butter�ies

that are not in D may �y away, and this takes only a �nite time.

This assumption has b een inserted into the problem statement in order to avoid several technical

details regarding �niteness issues. It may also simplify several other arguments.

Comment 2. The description of the �nal set F p� Dq seems to b e crucial for the solution; the

Problem Selection Committee is not aware of any solution that completely avoids such a description.

On the other hand, after the set D has b een de�ned, the further steps may b e p erformed in several

ways. For example, in order to prove that all butter�ies outside D will �y away, one may argue as

follows. (Here we will also make use of the assumption that the pro cess eventually stops.)

First of all, notice that the pro cess can b e mo di�ed in the following manner: Each minute, exactly

one of the lonely butter�ies �ies away, until there are no more lonely butter�ies. The mo di�ed pro cess

necessarily stops at the same state as the initial one. Indeed, one may observe, as in solution ab ove,

that the (unique) largest stable set is still the �nal set for the mo di�ed pro cess.

Thus, in order to prove our claim, it su�ces to indicate an order in which the butter�ies should �y

away in the new pro cess; if we are able to exhaust the whole set Q z D , we are done.

Let C0 � d0d1 : : : dm b e the V -curve. Take its copy C and shift it downwards so that d0 comes to

some p oint b elow the origin O . Now we start moving C upwards continuously, until it comes back to its

initial p osition C0 . At each moment when C meets some lattice p oints, we convince all the butter�ies at

those p oints to �y away in a certain order. We will now show that we always have enough arguments

for butter�ies to do so, which will �nish our argument for the claim..

Let C1 � d1
0d1

1 : : : d1
m b e a p osition of C when it meets some butter�ies. We assume that all butter�ies

under this current p osition of C were already convinced enough and �ied away. Consider the lowest

butter�y b on C1
. Let d1

i d
1
i � 1 b e the segment it lies on; we cho ose i so that b � d1

i � 1 (this is p ossible

b ecause C as not yet reached C0 ).

Draw a line ` containing the segment d1
i d

1
i � 1 . Then all the butter�ies in N pbq are situated on or

ab ove ` ; moreover, those on ` all lie on the segment di di � 1 . But this segment now contains at most ki

butter�ies (including b), since otherwise some butter�y had to o ccupy d1
i � 1 which is imp ossible by the

choice of b. Thus, b is lonely and hence may b e convinced to �y away.

After b has �ied away, we switch to the lowest of the remaining butter�ies on C1
, and so on.

Claims 3 and 4 also allow some di�erent pro ofs which are not presented here.
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Geometry

G1.

Let ABCDE b e a convex p entagon such that AB � BC � CD , = EAB � = BCD , and

= EDC � = CBA . Prove that the p erp endicular line from E to BC and the line segments AC
and BD are concurrent.

(Italy)

Solution 1. Throughout the solution, we refer to = A , = B , = C , = D , and = E as internal

angles of the p entagon ABCDE . Let the p erp endicular bisectors of AC and BD , which pass

resp ectively through B and C , meet at p oint I . Then BD K CI and, similarly, AC K BI .

Hence AC and BD meet at the ortho center H of the triangle BIC , and IH K BC . It remains

to prove that E lies on the line IH or, equivalently, EI K BC .

Lines IB and IC bisect = B and = C , resp ectively. Since IA � IC , IB � ID , and AB �
BC � CD , the triangles IAB , ICB and ICD are congruent. Hence = IAB � = ICB �
= C{2 � = A{2, so the line IA bisects = A . Similarly, the line ID bisects = D . Finally, the

line IE bisects = E b ecause I lies on all the other four internal bisectors of the angles of the

p entagon.

The sum of the internal angles in a p entagon is 5400
, so

= E � 5400 � 2= A � 2= B:

In quadrilateral ABIE ,

= BIE � 3600 � = EAB � = ABI � = AEI � 3600 � = A �
1
2

= B �
1
2

= E

� 3600 � = A �
1
2

= B � p 2700 � = A � = Bq

� 900 �
1
2

= B � 900 � = IBC;

which means that EI K BC , completing the pro of.

A

E

D

B T C

I

H

Solution 2. We present another pro of of the fact that E lies on line IH . Since all �ve internal

bisectors of ABCDE meet at I , this p entagon has an inscrib ed circle with center I . Let this

circle touch side BC at T .

Applying Brianchon's theorem to the (degenerate) hexagon ABT CDE we conclude that

AC , BD and ET are concurrent, so p oint E also lies on line IHT , completing the pro of.
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Solution 3. We present yet another pro of that EI K BC . In p entagon ABCDE , = E  
1800 ðñ = A � = B � = C � = D ¡ 3600

. Then = A � = B � = C � = D ¡ 1800
, so rays EA

and CB meet at a p oint P , and rays BC and ED meet at a p oint Q. Now,

= P BA � 1800 � = B � 1800 � = D � = QDC

and, similarly, = P AB � = QCD . Since AB � CD , the triangles P AB and QCD are congruent

with the same orientation. Moreover, P QE is isosceles with EP � EQ .

A

E

B C

I

H

P Q

D

In Solution 1 we have proved that triangles IAB and ICD are also congruent with the

same orientation. Then we conclude that quadrilaterals P BIA and QDIC are congruent,

which implies IP � IQ . Then EI is the p erp endicular bisector of P Q and, therefore, EI K
P Q ðñ EI K BC .

Comment. Even though all three solutions used the p oint I , there are solutions that do not need it.

We present an outline of such a solution: if J is the incenter of 4 QCD (with P and Q as de�ned in

Solution 3), then a simple angle chasing shows that triangles CJD and BHC are congruent. Then if

S is the pro jection of J onto side CD and T is the orthogonal pro jection of H onto side BC , one can

verify that

QT � QC � CT � QC � DS � QC �
CD � DQ � QC

2
�

PB � BC � QC
2

�
PQ
2

;

so T is the midp oint of PQ, and E , H and T all lie on the p erp endicular bisector of PQ.
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G2.

Let R and S b e distinct p oints on circle 
 , and let t denote the tangent line to 
 at R .

Point R1
is the re�ection of R with resp ect to S. A p oint I is chosen on the smaller arc RS of


 so that the circumcircle � of triangle ISR 1
intersects t at two di�erent p oints. Denote by A

the common p oint of � and t that is closest to R . Line AI meets 
 again at J . Show that JR1

is tangent to � .

(Luxembourg)

Solution 1. In the circles 
 and � we have = JRS � = JIS � = AR1S. On the other hand,

since RA is tangent to 
 , we get = SJR � = SRA . So the triangles ARR 1
and SJR are similar,

and

R1R
RJ

�
AR1

SR
�

AR1

SR1
:

The last relation, together with = AR1S � = JRR1
, yields 4 ASR1 � 4 R1JR , hence

= SAR1 � = RR1J . It follows that JR1
is tangent to � at R1

.

R

S

R0

A

I

J




!
R

S

R0

A

I

J

A0




!

Solution 1 Solution 2

Solution 2. As in Solution 1, we notice that = JRS � = JIS � = AR1S, so we have RJ k AR1
.

Let A1
b e the re�ection of A ab out S; then ARA 1R1

is a parallelogram with center S, and

hence the p oint J lies on the line RA1
.

From = SR1A1 � = SRA � = SJR we get that the p oints S; J; A1; R1
are concyclic. This

proves that = SR1J � = SA1J � = SA1R � = SAR1
, so JR1

is tangent to � at R1
.
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G3.

Let O b e the circumcenter of an acute scalene triangle ABC . Line OA intersects the

altitudes of ABC through B and C at P and Q, resp ectively. The altitudes meet at H . Prove

that the circumcenter of triangle P QH lies on a median of triangle ABC .

(Ukraine)

Solution. Supp ose, without loss of generality, that AB   AC . We have = P QH � 900 �
= QAB � 900 � = OAB � 1

2= AOB � = ACB , and similarly = QP H � = ABC . Thus triangles

ABC and HP Q are similar. Let 
 and ! b e the circumcircles of ABC and HP Q , resp ectively.

Since = AHP � 900 � = HAC � = ACB � = HQP , line AH is tangent to ! .

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
C

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH T

MS

O




!

Let T b e the center of ! and let lines AT and BC meet at M . We will take advantage

of the similarity b etween ABC and HP Q and the fact that AH is tangent to ! at H , with

A on line P Q. Consider the corresp onding tangent AS to 
 , with S P BC . Then S and A
corresp ond to each other in 4 ABC � 4 HP Q , and therefore = OSM � = OAT � = OAM .

Hence quadrilateral SAOM is cyclic, and since the tangent line AS is p erp endicular to AO ,

= OMS � 1800 � = OAS � 900
. This means that M is the orthogonal pro jection of O onto

BC , which is its midp oint. So T lies on median AM of triangle ABC .
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G4.

In triangle ABC , let ! b e the excircle opp osite A . Let D , E , and F b e the p oints

where ! is tangent to lines BC , CA , and AB , resp ectively. The circle AEF intersects line BC
at P and Q. Let M b e the midp oint of AD . Prove that the circle MP Q is tangent to ! .

(Denmark)

Solution 1. Denote by 
 the circle AEF P Q , and denote by  the circle P QM . Let the line

AD meet ! again at T � D . We will show that  is tangent to ! at T .

We �rst prove that p oints P; Q; M; T are concyclic. Let A1
b e the center of ! . Since

A1E K AE and A1F K AF , AA 1
is a diameter in 
 . Let N b e the midp oint of DT ; from

A1D � A1T we can see that = A1NA � 900
and therefore N also lies on the circle 
 . Now, from

the p ower of D with resp ect to the circles  and 
 we get

DP � DQ � DA � DN � 2DM �
DT
2

� DM � DT;

so P; Q; M; T are concyclic.

If EF k BC , then ABC is isosceles and the problem is now immediate by symmetry.

Otherwise, let the tangent line to ! at T meet line BC at p oint R . The tangent line segments

RD and RT have the same length, so A1R is the p erp endicular bisector of DT ; since ND � NT ,

N lies on this p erp endicular bisector.

In right triangle A1RD , RD 2 � RN �RA1 � RP �RQ , in which the last equality was obtained

from the p ower of R with resp ect to 
 . Hence RT 2 � RP � RQ , which implies that RT is also

tangent to  . Because RT is a common tangent to ! and  , these two circles are tangent at T .




A

P B D

M

Q

A0

N

T

F

C

!
E



R

Solution 2. After proving that P; Q; M; T are concyclic, we �nish the problem in a di�erent

fashion. We only consider the case in which EF and BC are not parallel. Let lines P Q and

EF meet at p oint R . Since P Q and EF are radical axes of 
 ;  and !;  , resp ectively, R is the

radical center of these three circles.

With resp ect to the circle ! , the line DR is the p olar of D , and the line EF is the p olar

of A . So the p ole of line ADT is DR X EF � R , and therefore RT is tangent to ! .

Finally, since T b elongs to  and ! and R is the radical center of  , ! and 
 , line RT is

the radical axis of  and ! , and since it is tangent to ! , it is also tangent to  . Because RT is

a common tangent to ! and  , these two circles are tangent at T .

Comment. In Solution 2 we de�ned the p oint R from Solution 1 in a di�erent way.
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Solution 3. We give an alternative pro of that the circles are tangent at the common p oint T .

Again, we start from the fact that P; Q; M; T are concyclic. Let p oint O b e the midp oint of

diameter AA 1
. Then MO is the midline of triangle ADA 1

, so MO k A1D . Since A1D K P Q,

MO is p erp endicular to P Q as well.

Lo oking at circle 
 , which has center O , MO K P Q implies that MO is the p erp endicular

bisector of the chord P Q. Thus M is the midp oint of arc

•P Q from  , and the tangent line m
to  at M is parallel to P Q.




A

P B D

M

Q

A0

N

T

F

E

C

!

m



O

Consider the homothety with center T and ratio

T D
T M . It takes D to M , and the line P Q

to the line m . Since the circle that is tangent to a line at a given p oint and that go es through

another given p oint is unique, this homothety also takes ! (tangent to P Q and going through T )

to  (tangent to m and going through T ). We conclude that ! and  are tangent at T .
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G5.

Let ABCC1B1A1 b e a convex hexagon such that AB � BC , and supp ose that the line

segments AA 1 , BB 1 , and CC1 have the same p erp endicular bisector. Let the diagonals AC1

and A1C meet at D , and denote by ! the circle ABC . Let ! intersect the circle A1BC1 again

at E � B . Prove that the lines BB 1 and DE intersect on ! .

(Ukraine)

Solution 1. If AA 1 � CC1 , then the hexagon is symmetric ab out the line BB 1 ; in par-

ticular the circles ABC and A1BC1 are tangent to each other. So AA 1 and CC1 must b e

di�erent. Since the p oints A and A1 can b e interchanged with C and C1 , resp ectively, we may

assume AA 1   CC1 .

Let R b e the radical center of the circles AEBC and A1EBC 1 , and the circumcircle of the

symmetric trap ezoid ACC1A1 ; that is the common p oint of the pairwise radical axes AC , A1C1 ,

and BE . By the symmetry of AC and A1C1 , the p oint R lies on the common p erp endicular

bisector of AA 1 and CC1 , which is the external bisector of = ADC .

Let F b e the second intersection of the line DR and the circle ACD . From the p ower of

R with resp ect to the circles ! and ACF D we have RB � RE � RA � RC � RD � DF , so the

p oints B; E; D and F are concyclic.

The line RDF is the external bisector of = ADC , so the p oint F bisects the arc

•CDA .

By AB � BC , on circle ! , the p oint B is the midp oint of arc

ŽAEC ; let M b e the p oint

diametrically opp osite to B , that is the midp oint of the opp osite arc

•CA of ! . Notice that the

p oints B , F and M lie on the p erp endicular bisector of AC , so they are collinear.

R

B1

C1C

B

E
A

!

A1

F

D

M

X

Finally, let X b e the second intersection p oint of ! and the line DE . Since BM is a diameter

in ! , we have = BXM � 900
. Moreover,

= EXM � 1800 � = MBE � 1800 � = F BE � = EDF ;

so MX and F D are parallel. Since BX is p erp endicular to MX and BB 1 is p erp endicular

to F D , this shows that X lies on line BB 1 .
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Solution 2. De�ne p oint M as the p oint opp osite to B on circle ! , and p oint R as the

intersection of lines AC , A1C1 and BE , and show that R lies on the external bisector of

= ADC , like in the �rst solution.

Since B is the midp oint of the arc

ŽAEC , the line BER is the external bisector of = CEA .

Now we show that the internal angle bisectors of = ADC and = CEA meet on the segment AC .

Let the angle bisector of = ADC meet AC at S, and let the angle bisector of = CEA , which is

line EM , meet AC at S1
. By applying the angle bisector theorem to b oth internal and external

bisectors of = ADC and = CEA ,

AS : CS � AD : CD � AR : CR � AE : CE � AS1 : CS1;

so indeed S � S1
.

By = RDS � = SER � 900
the p oints R , S, D and E are concyclic.

B1

C1

D

M

C

R

A1A
E

B

X

!

S = S0

Now let the lines BB 1 and DE meet at p oint X . Notice that = EXB � = EDS b ecause b oth

BB 1 and DS are p erp endicular to the line DR , we have that = EDS � = ERS in circle SRDE ,

and = ERS � = EMB b ecause SR K BM and ER K ME . Therefore, = EXB � = EMB , so

indeed, the p oint X lies on ! .
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G6.

Let n ¥ 3 b e an integer. Two regular n -gons A and B are given in the plane. Prove

that the vertices of A that lie inside B or on its b oundary are consecutive.

(That is, prove that there exists a line separating those vertices of A that lie inside B or on

its b oundary from the other vertices of A .)

(Czech Republic)

Solution 1. In b oth solutions, by a polygon we always mean its interior together with its

b oundary.

We start with �nding a regular n -gon C which piq is inscrib ed into B (that is, all vertices

of C lie on the p erimeter of B ); and pii q is either a translation of A , or a homothetic image of A
with a p ositive factor.

Such a p olygon may b e constructed as follows. Let OA and OB b e the centers of A and B ,

resp ectively, and let A b e an arbitrary vertex of A . Let

ÝÝÝÑ
OB C b e the vector co-directional

to

ÝÝÝÑ
OA A , with C lying on the p erimeter of B . The rotations of C around OB by multiples

of 2� {n form the required p olygon. Indeed, it is regular, inscrib ed into B (due to the rotational

symmetry of B ), and �nally the translation/homothety mapping

ÝÝÝÑ
OA A to

ÝÝÝÑ
OB C maps A to C.

Now we separate two cases.

A

C

OA
OB

B
A

C

C1

C2

C3

A1

A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

BT

BB

BL

BR
A

C

Construction of C Case 1: Translation

Case 1: C is a translation of A by a vector ~v.

Denote by t the translation transform by vector ~v. We need to prove that the vertices of C
which stay in B under t are consecutive. To visualize the argument, we refer the plane to Carte-

sian co ordinates so that the x -axis is co-directional with ~v. This way, the notions of right/left

and top/b ottom are also intro duced, according to the x - and y -co ordinates, resp ectively.

Let BT and BB b e the top and the b ottom vertices of B (if several vertices are extremal, we

take the rightmost of them). They split the p erimeter of B into the right part BR and the left

part BL (the vertices BT and BB are assumed to lie in b oth parts); each part forms a connected

subset of the p erimeter of B . So the vertices of C are also split into two parts CL € BL and

CR € BR , each of which consists of consecutive vertices.

Now, all the p oints in BR (and hence in CR ) move out from B under t , since they are

the rightmost p oints of B on the corresp onding horizontal lines. It remains to prove that the

vertices of CL which stay in B under t are consecutive.

For this purp ose, let C1 , C2 , and C3 b e three vertices in CL such that C2 is b etween C1

and C3 , and tpC1q and tpC3q lie in B ; we need to prove that tpC2q PB as well. Let A i � tpCi q.

The line through C2 parallel to ~v crosses the segment C1C3 to the right of C2 ; this means that

this line crosses A1A3 to the right of A2 , so A2 lies inside the triangle A1C2A3 which is contained

in B . This yields the desired result.

Case 2: C is a homothetic image of A centered at X with factor k ¡ 0.
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Denote by h the homothety mapping C to A . We need now to prove that the vertices of C
which stay in B after applying h are consecutive. If X PB , the claim is easy. Indeed, if k   1,

then the vertices of A lie on the segments of the form XC ( C b eing a vertex of C) which lie

in B . If k ¡ 1, then the vertices of A lie on the extensions of such segments XC b eyond C ,

and almost all these extensions lie outside B . The exceptions may o ccur only in case when X
lies on the b oundary of B , and they may cause one or two vertices of A stay on the b oundary

of B . But even in this case those vertices are still consecutive.

So, from now on we assume that X RB .

Now, there are two vertices BT and BB of B such that B is contained in the angle = BT XB B ;

if there are several options, say, for BT , then we cho ose the farthest one from X if k ¡ 1, and the

nearest one if k   1. For the visualization purp oses, we refer the plane to Cartesian co ordinates

so that the y -axis is co-directional with

ÝÝÝÝÑ
BBBT , and X lies to the left of the line BT BB . Again,

the p erimeter of B is split by BT and BB into the right part BR and the left part BL , and the

set of vertices of C is split into two subsets CR € BR and CL € BL .

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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C
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Case 2, X inside B Sub case 2.1: k ¡ 1

Subcase 2.1: k ¡ 1.

In this sub case, all p oints from BR (and hence from CR ) move out from B under h , b ecause

they are the farthest p oints of B on the corresp onding rays emanated from X . It remains to

prove that the vertices of CL which stay in B under h are consecutive.

Again, let C1 , C2 , C3 b e three vertices in CL such that C2 is b etween C1 and C3 , and hpC1q
and hpC3q lie in B . Let A i � hpCi q. Then the ray XC 2 crosses the segment C1C3 b eyond C2 ,

so this ray crosses A1A3 b eyond A2 ; this implies that A2 lies in the triangle A1C2A3 , which is

contained in B .

C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3
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C

Sub case 2.2: k   1

Subcase 2.2: k   1.

This case is completely similar to the previous one. All p oints from BL (and hence from CL

move out from B under h , b ecause they are the nearest p oints of B on the corresp onding
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rays emanated from X . Assume that C1 , C2 , and C3 are three vertices in CR such that C2

lies b etween C1 and C3 , and hpC1q and hpC3q lie in B ; let A i � hpCi q. Then A2 lies on

the segment XC 2 , and the segments XA 2 and A1A3 cross each other. Thus A2 lies in the

triangle A1C2A3 , which is contained in B .

Comment 1. In fact, Case 1 can b e reduced to Case 2 via the following argument.

Assume that A and C are congruent. Apply to A a homothety centered at OB with a factor slightly

smaller than 1 to obtain a p olygon A 1
. With appropriately chosen factor, the vertices of A which were

outside/inside B stay outside/inside it, so it su�ces to prove our claim for A 1
instead of A . And now,

the p olygon A 1
is a homothetic image of C, so the arguments from Case 2 apply.

Comment 2. After the p olygon C has b een found, the rest of the solution uses only the convexity of

the p olygons, instead of regularity. Thus, it proves a more general statement:

Assume that A , B , and C are three convex polygons in the plane such that C is inscribed into B ,

and A can be obtained from it via either translation or positive homothety. Then the vertices of A that

lie inside B or on its boundary are consecutive.

Solution 2. Let OA and OB b e the centers of A and B , resp ectively. Denote rns � t 1; 2; : : : ; nu.

We start with intro ducing appropriate enumerations and notations. Enumerate the sidelines

of B clo ckwise as `1; `2; : : : ; `n . Denote by H i the half-plane of ` i that contains B ( H i is assumed

to contain ` i ); by B i the midpoint of the side b elonging to ` i ; and �nally denote

ÝÑ
bi �

ÝÝÝÑ
B i OB .

(As usual, the numb ering is cyclic mo dulo n , so `n� i � ` i etc.)

Now, cho ose a vertex A1 of A such that the vector

ÝÝÝÑ
OA A1 p oints �mostly outside H 1 �;

strictly sp eaking, this means that the scalar pro duct x
ÝÝÝÑ
OA A1;

ÝÑ
b1y is minimal. Starting from A1 ,

enumerate the vertices of A clo ckwise as A1; A2; : : : ; An ; by the rotational symmetry, the choice

of A1 yields that the vector

ÝÝÝÑ
OA A i p oints �mostly outside H i �, i.e.,

x
ÝÝÝÑ
OA A i ;

ÝÑ
bi y � min

j Prns
x
ÝÝÝÑ
OA A j ;

ÝÑ
bi y: (1)

An

A1 A2

A3Bn

B1 B2

B3

`1

`2

`3

�!
bn

�!
b1

�!
b2

�!
b3H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1

OA

OB
B A

Enumerations and notations

We intend to reformulate the problem in more combinatorial terms, for which purp ose we

intro duce the following notion. Say that a subset I „ r ns is connected if the elements of this

set are consecutive in the cyclic order (in other words, if we join each i with i � 1 mod n by an

edge, this subset is connected in the usual graph sense). Clearly, the union of two connected

subsets sharing at least one element is connected to o. Next, for any half-plane H the indices

of vertices of, say, A that lie in H form a connected set.

To access the problem, we denote

M � t j P rns: A j RBu; M i � t j P rns: A j RH i u for i P rns.

We need to prove that rns zM is connected, which is equivalent to M b eing connected. On

the other hand, since B �
“

i Prns H i , we have M �
”

i Prns M i , where the sets M i are easier to

investigate. We will utilize the following prop erties of these sets; the �rst one holds by the

de�nition of M i , along with the ab ove remark.
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The sets M i

Property 1: Each set M i is connected. l

Property 2: If M i is nonempty, then i PM i .

Proof. Indeed, we have

j PM i ðñ A j RH i ðñ x
ÝÝÝÑ
B i A j ;

ÝÑ
bi y   0 ðñ x

ÝÝÝÑ
OA A j ;

ÝÑ
bi y   x

ÝÝÝÑ
OA B i ;

ÝÑ
bi y: (2)

The right-hand part of the last inequality do es not dep end on j . Therefore, if some j lies in M i ,

then by (1) so do es i . l

In view of Prop erty 2, it is useful to de�ne the set

M 1 � t i P rns: i PM i u � t i P rns: M i � ? u:

Property 3: The set M 1
is connected.

Proof. To prove this prop erty, we pro ceed on with the investigation started in (2) to write

i PM 1 ðñ A i PM i ðñ x
ÝÝÝÑ
B i A i ;

ÝÑ
bi y   0 ðñ x

ÝÝÝÝÑ
OB OA ;

ÝÑ
bi y   x

ÝÝÝÑ
OB B i ;

ÝÑ
bi y � x

ÝÝÝÑ
A i OA ;

ÝÑ
bi y:

The right-hand part of the obtained inequality do es not dep end on i , due to the rotational

symmetry; denote its constant value by � . Thus, i P M 1
if and only if x

ÝÝÝÝÑ
OB OA ;

ÝÑ
bi y   � . This

condition is in turn equivalent to the fact that B i lies in a certain (op en) half-plane whose

b oundary line is orthogonal to OB OA ; thus, it de�nes a connected set. l

Now we can �nish the solution. Since M 1 „ M , we have

M �
¤

i Prns

M i � M 1Y
¤

i Prns

M i ;

so M can b e obtained from M 1
by adding all the sets M i one by one. All these sets are

connected, and each nonempty M i contains an element of M 1
(namely, i ). Thus their union is

also connected.

Comment 3. Here we present a way in which one can come up with a solution like the one ab ove.

Assume, for sake of simplicity, that OA lies inside B . Let us �rst put onto the plane a very small

regular n -gon A 1
centered at OA and aligned with A ; all its vertices lie inside B . Now we start blowing

it up, lo oking at the order in which the vertices leave B . To go out of B , a vertex should cross a certain

side of B (which is hard to describ e), or, equivalently, to cross at least one sideline of B � and this

event is easier to describ e. Indeed, the �rst vertex of A 1
to cross ` i is the vertex A1

i (corresp onding to A i

in A ); more generally, the vertices A1
j cross ` i in such an order that the scalar pro duct x

ÝÝÝÑ
OA A j ;

ÝÑ
bi y do es

not increase. For di�erent indices i , these orders are just cyclic shifts of each other; and this provides

some intuition for the notions and claims from Solution 2.
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G7.

A convex quadrilateral ABCD has an inscrib ed circle with center I . Let I a , I b, I c ,

and I d b e the incenters of the triangles DAB , ABC , BCD , and CDA , resp ectively. Supp ose

that the common external tangents of the circles AI bI d and CI bI d meet at X , and the common

external tangents of the circles BI aI c and DI aI c meet at Y . Prove that = XIY � 900
.

(Kazakhstan)

Solution. Denote by ! a , ! b, ! c and ! d the circles AI bI d , BI aI c , CI bI d , and DI aI c , let their

centers b e Oa , Ob, Oc and Od , and let their radii b e ra , rb, r c and rd , resp ectively.

Claim 1. I bI d K AC and I aI c K BD .

Proof. Let the incircles of triangles ABC and ACD b e tangent to the line AC at T and T1
,

resp ectively. (See the �gure to the left.) We have AT � AB � AC � BC
2 in triangle ABC , AT 1 �

AD � AC � CD
2 in triangle ACD , and AB � BC � AD � CD in quadrilateral ABCD , so

AT �
AC � AB � BC

2
�

AC � AD � CD
2

� AT 1:

This shows T � T1
. As an immediate consequence, I bI d K AC .

The second statement can b e shown analogously. l

TA C

B

I b

T0

I d

D D

I

I d

A C

I b

B

! a

TOa

Claim 2. The p oints Oa , Ob, Oc and Od lie on the lines AI , BI , CI and DI , resp ectively.

Proof. By symmetry it su�ces to prove the claim for Oa . (See the �gure to the right ab ove.)

Notice �rst that the incircles of triangles ABC and ACD can b e obtained from the incircle of

the quadrilateral ABCD with homothety centers B and D , resp ectively, and homothety factors

less than 1, therefore the p oints I b and I d lie on the line segments BI and DI , resp ectively.

As is well-known, in every triangle the altitude and the diameter of the circumcircle starting

from the same vertex are symmetric ab out the angle bisector. By Claim 1, in triangle AI dI b,

the segment AT is the altitude starting from A . Since the fo ot T lies inside the segment

I bI d , the circumcenter Oa of triangle AI dI b lies in the angle domain I bAI d in such a way that

= I bAT � = OaAI d . The p oints I b and I d are the incenters of triangles ABC and ACD , so the

lines AI b and AI d bisect the angles = BAC and = CAD , resp ectively. Then

= OaAD � = OaAI d � = I dAD � = I bAT � = I dAD � 1
2= BAC � 1

2= CAD � 1
2= BAD;

so Oa lies on the angle bisector of = BAD , that is, on line AI . l

The p oint X is the external similitude center of ! a and ! c ; let U b e their internal similitude

center. The p oints Oa and Oc lie on the p erp endicular bisector of the common chord I bI d of ! a

and ! c , and the two similitude centers X and U lie on the same line; by Claim 2, that line is

parallel to AC .
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Y

X

I b

D

C

B

A

I d

U Oc
Oa

I

! c

! a

W

From the similarity of the circles ! a and ! c , from OaI b � OaI d � OaA � ra and OcI b �
OcI d � OcC � r c , and from AC k OaOc we can see that

OaX
OcX

�
OaU
OcU

�
ra

r c
�

OaI b

OcI b
�

OaI d

OcI d
�

OaA
OcC

�
OaI
OcI

:

So the p oints X; U; I b; I d; I lie on the Ap ollonius circle of the p oints Oa; Oc with ratio ra : r c . In

this Ap ollonius circle XU is a diameter, and the lines IU and IX are resp ectively the internal

and external bisectors of = OaIO c � = AIC , according to the angle bisector theorem. Moreover,

in the Ap ollonius circle the diameter UX is the p erp endicular bisector of I bI d , so the lines IX
and IU are the internal and external bisectors of = I bII d � = BID , resp ectively.

Rep eating the same argument for the p oints B; D instead of A; C , we get that the line IY is

the internal bisector of = AIC and the external bisector of = BID . Therefore, the lines IX and

IY resp ectively are the internal and external bisectors of = BID , so they are p erp endicular.

Comment. In fact the p oints Oa , Ob, Oc and Od lie on the line segments AI , BI , CI and DI ,

resp ectively. For the p oint Oa this can b e shown for example by = I dOaA � = AOaI b � p 1800 �
2= OaAI dq�p 1800� 2= I bAOaq � 360� � = BAD � = ADI � = DIA � = AIB � = IBA ¡ = I dIA � = AII b.

The solution also shows that the line IY passes through the p oint U , and analogously, IX passes

through the internal similitude center of ! b and ! d .

http://mathworld.wolfram.com/ApolloniusCircle.html
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G8.

There are 2017 mutually external circles drawn on a blackb oard, such that no two are

tangent and no three share a common tangent. A tangent segment is a line segment that is

a common tangent to two circles, starting at one tangent p oint and ending at the other one.

Luciano is drawing tangent segments on the blackb oard, one at a time, so that no tangent

segment intersects any other circles or previously drawn tangent segments. Luciano keeps

drawing tangent segments until no more can b e drawn. Find all p ossible numb ers of tangent

segments when he stops drawing.

(Australia)

Answer: If there were n circles, there would always b e exactly 3pn � 1q segments; so the only

p ossible answer is 3 � 2017� 3 � 6048.

Solution 1. First, consider a particular arrangement of circles C1; C2; : : : ; Cn where all the

centers are aligned and each Ci is eclipsed from the other circles by its neighb ors � for example,

taking Ci with center pi2; 0q and radius i {2 works. Then the only tangent segments that can

b e drawn are b etween adjacent circles Ci and Ci � 1 , and exactly three segments can b e drawn

for each pair. So Luciano will draw exactly 3pn � 1q segments in this case.

C3
C4 C5C2C1

For the general case, start from a �nal con�guration (that is, an arrangement of circles

and segments in which no further segments can b e drawn). The idea of the solution is to

continuously resize and move the circles around the plane, one by one (in particular, making

sure we never have 4 circles with a common tangent line), and show that the numb er of segments

drawn remains constant as the picture changes. This way, we can reduce any circle/segment

con�guration to the particular one mentioned ab ove, and the �nal numb er of segments must

remain at 3n � 3.

Some preliminary considerations: lo ok at all p ossible tangent segments joining any two

circles. A segment that is tangent to a circle A can do so in two p ossible orientations � it

may come out of A in clo ckwise or counterclo ckwise orientation. Two segments touching the

same circle with the same orientation will never intersect each other. Each pair pA; B q of circles

has 4 choices of tangent segments, which can b e identi�ed by their orientations � for example,

pA� ; B �q would b e the segment which comes out of A in clo ckwise orientation and comes out of

B in counterclo ckwise orientation. In total, we have 2npn � 1q p ossible segments, disregarding

intersections.

Now we pick a circle C and start to continuously move and resize it, maintaining all existing

tangent segments according to their identi�cations, including those involving C . We can keep

our choice of tangent segments until the con�guration reaches a transition . We lose nothing if

we assume that C is kept at least " units away from any other circle, where " is a p ositive, �xed

constant; therefore at a transition either: (1) a currently drawn tangent segment t suddenly

b ecomes obstructed; or (2) a currently absent tangent segment t suddenly b ecomes unobstructed

and available.

Claim. A transition can only o ccur when three circles C1; C2; C3 are tangent to a common line `
containing t , in a way such that the three tangent segments lying on ` (joining the three circles

pairwise) are not obstructed by any other circles or tangent segments (other than C1; C2; C3 ).

Proof. Since (2) is e�ectively the reverse of (1), it su�ces to prove the claim for (1). Supp ose t
has suddenly b ecome obstructed, and let us consider two cases.
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Case 1: t becomes obstructed by a circle

t

Ø

t

Ø

t

Then the new circle b ecomes the third circle tangent to ` , and no other circles or tangent

segments are obstructing t .

Case 2: t becomes obstructed by another tangent segment t1

When two segments t and t1
�rst intersect each other, they must do so at a vertex of one of

them. But if a vertex of t1
�rst crossed an interior p oint of t , the circle asso ciated to this vertex

was already blo cking t (absurd), or is ab out to (we already to ok care of this in case 1). So we

only have to analyze the p ossibility of t and t1
suddenly having a common vertex. However,

if that happ ens, this vertex must b elong to a single circle (rememb er we are keeping di�erent

circles at least " units apart from each other throughout the moving/resizing pro cess), and

therefore they must have di�erent orientations with resp ect to that circle.

t

t0

Ø

t

t0

Ø

t

t0

Thus, at the transition moment, b oth t and t1
are tangent to the same circle at a common

p oint, that is, they must b e on the same line ` and hence we again have three circles simultane-

ously tangent to ` . Also no other circles or tangent segments are obstructing t or t1
(otherwise,

they would have disapp eared b efore this transition). l

Next, we fo cus on the maximality of a con�guration immediately b efore and after a tran-

sition, where three circles share a common tangent line ` . Let the three circles b e C1; C2; C3 ,

ordered by their tangent p oints. The only p ossibly a�ected segments are the ones lying on

` , namely t12 , t23 and t13 . Since C2 is in the middle, t12 and t23 must have di�erent orienta-

tions with resp ect to C2 . For C1 , t12 and t13 must have the same orientation, while for C3 , t13

and t23 must have the same orientation. The �gure b elow summarizes the situation, showing

alternative p ositions for C1 (namely, C1 and C1
1 ) and for C3 ( C3 and C1

3 ).

C3

C0
3

t12 t23

C1

C0
1

C2
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Now p erturb the diagram slightly so the three circles no longer have a common tangent,

while preserving the de�nition of t12 , t23 and t13 according to their identi�cations. First note

that no other circles or tangent segments can obstruct any of these segments. Also recall that

tangent segments joining the same circle at the same orientation will never obstruct each other.

The availability of the tangent segments can now b e checked using simple diagrams.

Case 1: t13 passes through C2

C2
C3

C0
3

t13

t23t12

C1

C0
1

In this case, t13 is not available, but b oth t12 and t23 are.

Case 2: t13 does not pass through C2

C0
1

t12
t23

t13

C1

C0
3

C2
C3

Now t13 is available, but t12 and t23 obstruct each other, so only one can b e drawn.

In any case, exactly 2 out of these 3 segments can b e drawn. Thus the maximal numb er of

segments remains constant as we move or resize the circles, and we are done.

Solution 2. First note that all tangent segments lying on the b oundary of the convex hull of

the circles are always drawn since they do not intersect anything else. Now in the �nal picture,

aside from the n circles, the blackb oard is divided into regions. We can consider the picture

as a plane (multi-)graph G in which the circles are the vertices and the tangent segments are

the edges. The idea of this solution is to �nd a relation b etween the numb er of edges and the

numb er of regions in G; then, once we prove that G is connected, we can use Euler's formula

to �nish the problem.

The b oundary of each region consists of 1 or more (for now) simple closed curves, each

made of arcs and tangent segments. The segment and the arc might meet smo othly (as in Si ,

i � 1; 2; : : : ; 6 in the �gure b elow) or not (as in P1; P2; P3; P4 ; call such p oints sharp corners of

the b oundary). In other words, if a p erson walks along the b order, her direction would suddenly

turn an angle of � at a sharp corner.
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S4

S6

P1

P4

S5

P3

S1

P2

S3

S2

Claim 1. The outer b oundary B1 of any internal region has at least 3 sharp corners.

Proof. Let a p erson walk one lap along B1 in the counterclo ckwise orientation. As she do es

so, she will turn clockwise as she moves along the circle arcs, and not turn at all when moving

along the lines. On the other hand, her total rotation after one lap is 2� in the counterclockwise

direction! Where could she b e turning counterclo ckwise? She can only do so at sharp corners,

and, even then, she turns only an angle of � there. But two sharp corners are not enough, since

at least one arc must b e present�so she must have gone through at least 3 sharp corners. l

Claim 2. Each internal region is simply connected, that is, has only one b oundary curve.

Proof. Supp ose, by contradiction, that some region has an outer b oundary B1 and inner b oun-

daries B2; B3; : : : ; Bm ( m ¥ 2). Let P1 b e one of the sharp corners of B1 .

Now consider a car starting at P1 and traveling counterclo ckwise along B1 . It starts in

reverse, i.e., it is initially facing the corner P1 . Due to the tangent conditions, the car may travel

in a way so that its orientation only changes when it is moving along an arc. In particular, this

means the car will sometimes travel forward. For example, if the car approaches a sharp corner

when driving in reverse, it would continue travel forward after the corner, instead of making an

immediate half-turn. This way, the orientation of the car only changes in a clo ckwise direction

since the car always travels clo ckwise around each arc.

Now imagine there is a laser p ointer at the front of the car, p ointing directly ahead. Initially,

the laser endp oint hits P1 , but, as so on as the car hits an arc, the endp oint moves clo ckwise

around B1 . In fact, the laser endp oint must move continuously along B1 ! Indeed, if the

endp oint ever jump ed (within B1 , or from B1 to one of the inner b oundaries), at the moment

of the jump the interrupted laser would b e a drawable tangent segment that Luciano missed

(see �gure b elow for an example).

P1

P3

P2

Car

Laser
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Now, let P2 and P3 b e the next two sharp corners the car go es through, after P1 (the

previous lemma assures their existence). At P2 the car starts moving forward, and at P3 it will

start to move in reverse again. So, at P3 , the laser endp oint is at P3 itself. So while the car

moved counterclo ckwise b etween P1 and P3 , the laser endp oint moved clo ckwise b etween P1

and P3 . That means the laser b eam itself scanned the whole region within B1 , and it should

have crossed some of the inner b oundaries. l

Claim 3. Each region has exactly 3 sharp corners.

Proof. Consider again the car of the previous claim, with its laser still �rmly attached to its

front, traveling the same way as b efore and going through the same consecutive sharp corners

P1 , P2 and P3 . As we have seen, as the car go es counterclo ckwise from P1 to P3 , the laser

endp oint go es clo ckwise from P1 to P3 , so together they cover the whole b oundary. If there

were a fourth sharp corner P4 , at some moment the laser endp oint would pass through it. But,

since P4 is a sharp corner, this means the car must b e on the extension of a tangent segment

going through P4 . Since the car is not on that segment itself (the car never go es through P4 ),

we would have 3 circles with a common tangent line, which is not allowed.

P4

P1

P2

P3

Laser Car

l

We are now ready to �nish the solution. Let r b e the numb er of internal regions, and s b e the

numb er of tangent segments. Since each tangent segment contributes exactly 2 sharp corners

to the diagram, and each region has exactly 3 sharp corners, we must have 2s � 3r . Since the

graph corresp onding to the diagram is connected, we can use Euler's formula n � s � r � 1 and

�nd s � 3n � 3 and r � 2n � 2.
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Numb er Theory

N1.

The sequence a0; a1; a2; : : : of p ositive integers satis�es

an� 1 �

# ?
an ; if

?
an is an integer

an � 3; otherwise

for every n ¥ 0.

Determine all values of a0 ¡ 1 for which there is at least one numb er a such that an � a for

in�nitely many values of n .

(South Africa)

Answer: All p ositive multiples of 3.

Solution. Since the value of an� 1 only dep ends on the value of an , if an � am for two di�erent

indices n and m , then the sequence is eventually p erio dic. So we lo ok for the values of a0 for

which the sequence is eventually p erio dic.

Claim 1. If an � � 1 pmod 3q, then, for all m ¡ n , am is not a p erfect square. It follows that

the sequence is eventually strictly increasing, so it is not eventually p erio dic.

Proof. A square cannot b e congruent to � 1 mo dulo 3, so an � � 1 pmod 3q implies that an is

not a square, therefore an� 1 � an � 3 ¡ an . As a consequence, an� 1 � an � � 1 pmod 3q, so

an� 1 is not a square either. By rep eating the argument, we prove that, from an on, all terms of

the sequence are not p erfect squares and are greater than their predecessors, which completes

the pro of. l

Claim 2. If an � � 1 pmod 3q and an ¡ 9 then there is an index m ¡ n such that am   an .

Proof. Let t2
b e the largest p erfect square which is less than an . Since an ¡ 9, t is at least

3. The �rst square in the sequence an ; an � 3; an � 6; : : : will b e pt � 1q2
, pt � 2q2

or pt � 3q2
,

therefore there is an index m ¡ n such that am ¤ t � 3   t2   an , as claimed. l

Claim 3. If an � 0 pmod 3q, then there is an index m ¡ n such that am � 3.

Proof. First we notice that, by the de�nition of the sequence, a multiple of 3 is always followed

by another multiple of 3. If an P t3; 6; 9u the sequence will eventually follow the p erio dic pattern

3; 6; 9; 3; 6; 9; : : : . If an ¡ 9, let j b e an index such that aj is equal to the minimum value of

the set t an� 1; an� 2; : : : u. We must have aj ¤ 9, otherwise we could apply Claim 2 to aj and

get a contradiction on the minimality hyp othesis. It follows that aj P t3; 6; 9u, and the pro of is

complete. l

Claim 4. If an � 1 pmod 3q, then there is an index m ¡ n such that am � � 1 pmod 3q.

Proof. In the sequence, 4 is always followed by 2 � � 1 pmod 3q, so the claim is true for an � 4.

If an � 7, the next terms will b e 10; 13; 16; 4; 2; : : : and the claim is also true. For an ¥ 10, we

again take an index j ¡ n such that aj is equal to the minimum value of the set t an� 1; an� 2; : : : u,

which by the de�nition of the sequence consists of non-multiples of 3. Supp ose aj � 1 pmod 3q.

Then we must have aj ¤ 9 by Claim 2 and the minimality of aj . It follows that aj P t4; 7u,

so am � 2   aj for some m ¡ j , contradicting the minimality of aj . Therefore, we must have

aj � � 1 pmod 3q. l

It follows from the previous claims that if a0 is a multiple of 3 the sequence will eventually

reach the p erio dic pattern 3; 6; 9; 3; 6; 9; : : : ; if a0 � � 1 pmod 3q the sequence will b e strictly

increasing; and if a0 � 1 pmod 3q the sequence will b e eventually strictly increasing.

So the sequence will b e eventually p erio dic if, and only if, a0 is a multiple of 3.
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N2.

Let p ¥ 2 b e a prime numb er. Eduardo and Fernando play the following game making

moves alternately: in each move, the current player cho oses an index i in the set t 0; 1; : : : ; p� 1u
that was not chosen b efore by either of the two players and then cho oses an element ai of the

set t 0; 1; 2; 3; 4; 5; 6; 7; 8; 9u. Eduardo has the �rst move. The game ends after all the indices

i P t0; 1; : : : ; p � 1u have b een chosen. Then the following numb er is computed:

M � a0 � 10� a1 � � � � � 10p� 1 � ap� 1 �
p� 1¸

j � 0

aj � 10j :

The goal of Eduardo is to make the numb er M divisible by p, and the goal of Fernando is to

prevent this.

Prove that Eduardo has a winning strategy.

(Morocco)

Solution. We say that a player makes the move pi; a i q if he cho oses the index i and then the

element ai of the set t 0; 1; 2; 3; 4; 5; 6; 7; 8; 9u in this move.

If p � 2 or p � 5 then Eduardo cho oses i � 0 and a0 � 0 in the �rst move, and wins, since,

indep endently of the next moves, M will b e a multiple of 10.

Now assume that the prime numb er p do es not b elong to t 2; 5u. Eduardo cho oses i � p � 1
and ap� 1 � 0 in the �rst move. By Fermat's Little Theorem, p10pp� 1q{2q2 � 10p� 1 � 1 pmod pq,

so p | p10pp� 1q{2q2 � 1 � p 10pp� 1q{2 � 1qp10pp� 1q{2 � 1q. Since p is prime, either p | 10pp� 1q{2 � 1 or

p | 10pp� 1q{2 � 1. Thus we have two cases:

Case a: 10pp� 1q{2 � � 1 pmod pq

In this case, for each move pi; a i q of Fernando, Eduardo immediately makes the move pj; a j q �
pi � p� 1

2 ; ai q, if 0 ¤ i ¤ p� 3
2 , or pj; a j q � p i � p� 1

2 ; ai q, if

p� 1
2 ¤ i ¤ p� 2. We will have 10j � � 10i

pmod pq, and so aj � 10j � ai � 10j � � ai � 10i pmod pq. Notice that this move by Eduardo

is always p ossible. Indeed, immediately b efore a move by Fernando, for any set of the typ e

t r; r � p p � 1q{2u with 0 ¤ r ¤ pp � 3q{2, either no element of this set was chosen as an index

by the players in the previous moves or else b oth elements of this set were chosen as indices by

the players in the previous moves. Therefore, after each of his moves, Eduardo always makes

the sum of the numb ers ak � 10k
corresp onding to the already chosen pairs pk; akq divisible by

p, and thus wins the game.

Case b: 10pp� 1q{2 � 1 pmod pq

In this case, for each move pi; a i q of Fernando, Eduardo immediately makes the move pj; a j q �
pi � p� 1

2 ; 9 � ai q, if 0 ¤ i ¤ p� 3
2 , or pj; a j q � p i � p� 1

2 ; 9 � ai q, if

p� 1
2 ¤ i ¤ p � 2. The same

argument as ab ove shows that Eduardo can always make such move. We will have 10j � 10i

pmod pq, and so aj � 10j � ai � 10i � p ai � aj q �10i � 9 � 10i pmod pq. Therefore, at the end of

the game, the sum of all terms ak � 10k
will b e congruent to

p� 3
2¸

i � 0

9 � 10i � 10pp� 1q{2 � 1 � 0 pmod pq;

and Eduardo wins the game.
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N3.

Determine all integers n ¥ 2 with the following prop erty: for any integers a1; a2; : : : ; an

whose sum is not divisible by n , there exists an index 1 ¤ i ¤ n such that none of the numb ers

ai ; ai � ai � 1; : : : ; ai � ai � 1 � � � � � ai � n� 1

is divisible by n . (We let ai � ai � n when i ¡ n .)

(Thailand)

Answer: These integers are exactly the prime numb ers.

Solution. Let us �rst show that, if n � ab, with a; b ¥ 2 integers, then the prop erty in the

statement of the problem do es not hold. Indeed, in this case, let ak � a for 1 ¤ k ¤ n � 1 and

an � 0. The sum a1 � a2 � � � � � an � a � pn � 1q is not divisible by n . Let i with 1 ¤ i ¤ n b e

an arbitrary index. Taking j � b if 1 ¤ i ¤ n � b, and j � b� 1 if n � b   i ¤ n , we have

ai � ai � 1 � � � � � ai � j � 1 � a � b � n � 0 pmod nq:

It follows that the given example is indeed a counterexample to the prop erty of the statement.

Now let n b e a prime numb er. Supp ose by contradiction that the prop erty in the statement

of the problem do es not hold. Then there are integers a1; a2; : : : ; an whose sum is not divisible

by n such that for each i , 1 ¤ i ¤ n , there is j , 1 ¤ j ¤ n , for which the numb er ai � ai � 1 �
� � � � ai � j � 1 is divisible by n . Notice that, in any such case, we should have 1 ¤ j ¤ n � 1,

since a1 � a2 � � � � � an is not divisible by n . So we may construct recursively a �nite sequence

of integers 0 � i0   i1   i2   � � �   in with i s� 1 � i s ¤ n � 1 for 0 ¤ s ¤ n � 1 such that, for

0 ¤ s ¤ n � 1,

ai s � 1 � ai s � 2 � � � � � ai s� 1 � 0 pmod nq

(where we take indices mo dulo n ). Indeed, for 0 ¤ s   n , we apply the previous observation

to i � i s � 1 in order to de�ne i s� 1 � i s � j .

In the sequence of n � 1 indices i0; i1; i2; : : : ; in , by the pigeonhole principle, we have two

distinct elements which are congruent mo dulo n . So there are indices r; s with 0 ¤ r   s ¤ n
such that i s � i r pmod nq and

ai r � 1 � ai r � 2 � � � � � ai s �
s� 1¸

j � r

pai j � 1 � ai j � 2 � � � � � ai j � 1 q � 0 pmod nq:

Since i s � i r pmod nq, we have i s � i r � k � n for some p ositive integer k , and, since i j � 1 � i j ¤
n � 1 for 0 ¤ j ¤ n � 1, we have i s � i r ¤ pn � 1q �n , so k ¤ n � 1. But in this case

ai r � 1 � ai r � 2 � � � � � ai s � k � pa1 � a2 � � � � � anq

cannot b e a multiple of n , since n is prime and neither k nor a1 � a2 � � � � � an is a multiple

of n . A contradiction.
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N4.

Call a rational numb er short if it has �nitely many digits in its decimal expansion.

For a p ositive integer m , we say that a p ositive integer t is m -tastic if there exists a numb er

c P t1; 2; 3; : : : ; 2017u such that

10t � 1
c � m

is short, and such that

10k � 1
c � m

is not short for any

1 ¤ k   t . Let Spmq b e the set of m -tastic numb ers. Consider Spmq for m � 1; 2; : : :. What is

the maximum numb er of elements in Spmq?

(Turkey)

Answer: 807.

Solution. First notice that x PQ is short if and only if there are exp onents a; b¥ 0 such that

2a � 5b � x PZ . In fact, if x is short, then x � n
10k for some k and we can take a � b � k ; on the

other hand, if 2a � 5b � x � q PZ then x � 2b�5a q
10a � b , so x is short.

If m � 2a � 5b � s, with gcdps;10q � 1, then

10t � 1
m is short if and only if s divides 10t � 1. So

we may (and will) supp ose without loss of generality that gcdpm; 10q � 1. De�ne

C � t 1 ¤ c ¤ 2017: gcdpc;10q � 1u:

The m -tastic numb ers are then precisely the smallest exp onents t ¡ 0 such that 10t � 1
pmod cmq for some integer c PC , that is, the set of orders of 10 modulo cm. In other words,

Spmq � t ordcmp10q: c PCu:

Since there are 4 � 201� 3 � 807 numb ers c with 1 ¤ c ¤ 2017 and gcdpc;10q � 1, namely

those such that c � 1; 3; 7; 9 pmod 10q,

|Spmq| ¤ |C| � 807:

Now we �nd m such that |Spmq| � 807. Let

P � t 1   p ¤ 2017:p is prime ; p � 2; 5u

and cho ose a p ositive integer � such that every p PP divides 10� � 1 (e.g. � � ' pTq, T b eing

the pro duct of all primes in P ), and let m � 10� � 1.

Claim. For every c PC , we have

ordcmp10q � c�:

As an immediate consequence, this implies |Spmq| � | C| � 807, �nishing the problem.

Proof. Obviously ordmp10q � � . Let t � ordcmp10q. Then

cm � 10t � 1 ùñ m � 10t � 1 ùñ � � t:

Hence t � k� for some k PZ¡ 0 . We will show that k � c.

Denote by � ppnq the numb er of prime factors p in n , that is, the maximum exp onent � for

which p� � n . For every ` ¥ 1 and p PP , the Lifting the Exp onent Lemma provides

� pp10`� � 1q � � ppp10� q` � 1q � � pp10� � 1q � � pp̀ q � � ppmq � � pp̀ q;

so

cm � 10k� � 1 ðñ @ p PP; � ppcmq ¤ � pp10k� � 1q

ðñ @ p PP; � ppmq � � ppcq ¤ � ppmq � � ppkq

ðñ @ p PP; � ppcq ¤ � ppkq

ðñ c � k:

The �rst such k is k � c, so ordcmp10q � c� . l
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Comment. The Lifting the Exp onent Lemma states that, for any o dd prime p, any integers a; b
coprime with p such that p � a � b, and any p ositive integer exp onent n ,

� ppan � bnq � � ppa � bq � � ppnq;

and, for p � 2,

� 2pan � bnq � � 2pa2 � b2q � � ppnq � 1:

Both claims can b e proved by induction on n .
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N5.

Find all pairs pp; qq of prime numb ers with p ¡ q for which the numb er

pp � qqp� qpp � qqp� q � 1
pp � qqp� qpp � qqp� q � 1

is an integer.

(Japan)

Answer: The only such pair is p3; 2q.

Solution. Let M � p p � qqp� qpp � qqp� q � 1, which is relatively prime with b oth p � q and

p � q. Denote by pp � qq� 1
the multiplicative inverse of pp � qq mo dulo M .

By eliminating the term � 1 in the numerator,

pp � qqp� qpp � qqp� q � 1 � p p � qqp� qpp � qqp� q � 1 pmod M q

pp � qq2q � p p � qq2q pmod M q (1)

�
pp � qq � pp � qq� 1

	 2q
� 1 pmod M q: (2)

Case 1: q ¥ 5.

Consider an arbitrary prime divisor r of M . Notice that M is o dd, so r ¥ 3. By p2q, the

multiplicative order of

�
pp � qq � pp � qq� 1

	
mo dulo r is a divisor of the exp onent 2q in (2), so

it can b e 1, 2, q or 2q.

By Fermat's theorem, the order divides r � 1. So, if the order is q or 2q then r � 1 pmod qq.

If the order is 1 or 2 then r | pp � qq2 � p p � qq2 � 4pq, so r � p or r � q. The case r � p is not

p ossible, b ecause, by applying Fermat's theorem,

M � p p� qqp� qpp� qqp� q � 1 � qp� qp� qqp� q � 1 �
�
q2

� p
� 1 � q2 � 1 � p q� 1qpq� 1q pmod pq

and the last factors q � 1 and q � 1 are less than p and thus p - M . Hence, all prime divisors

of M are either q or of the form kq � 1; it follows that all p ositive divisors of M are congruent

to 0 or 1 mo dulo q.

Now notice that

M �
�

pp � qq
p� q

2 pp � qq
p� q

2 � 1
	�

pp � qq
p� q

2 pp � qq
p� q

2 � 1
	

is the pro duct of two consecutive p ositive o dd numb ers; b oth should b e congruent to 0 or 1
mo dulo q. But this is imp ossible by the assumption q ¥ 5. So, there is no solution in Case 1.

Case 2: q � 2.

By p1q, we have M | pp � qq2q � p p � qq2q � p p � 2q4 � p p � 2q4
, so

pp � 2qp� 2pp � 2qp� 2 � 1 � M ¤ pp � 2q4 � p p � 2q4 ¤ pp � 2q4 � 1;

pp � 2qp� 6pp � 2qp� 2 ¤ 1:

If p ¥ 7 then the left-hand side is obviously greater than 1. For p � 5 we have

pp � 2qp� 6pp � 2qp� 2 � 7� 1 � 37
which is also to o large.

There remains only one candidate, p � 3, which provides a solution:

pp � qqp� qpp � qqp� q � 1
pp � qqp� qpp � qqp� q � 1

�
55 � 11 � 1
51 � 15 � 1

�
3124

4
� 781:

So in Case 2 the only solution is pp; qq � p 3; 2q.



Shortlisted problems � solutions 81

Case 3: q � 3.

Similarly to Case 2, we have

M | pp � qq2q � p p � qq2q � 64�

� �
p � 3

2


 6

�
�

p � 3
2


 6
�

:

Since M is o dd, we conclude that

M |
�

p � 3
2


 6

�
�

p � 3
2


 6

and

pp � 3qp� 3pp � 3qp� 3 � 1 � M ¤
�

p � 3
2


 6

�
�

p � 3
2


 6

¤
�

p � 3
2


 6

� 1;

64pp � 3qp� 9pp � 3qp� 3 ¤ 1:

If p ¥ 11 then the left-hand side is obviously greater than 1. If p � 7 then the left-hand side is

64� 10� 2 � 410 ¡ 1. If p � 5 then the left-hand side is 64� 8� 4 � 28 � 22 ¡ 1. Therefore, there is

no solution in Case 3.
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N6.

Find the smallest p ositive integer n , or show that no such n exists, with the following

prop erty: there are in�nitely many distinct n -tuples of p ositive rational numb ers pa1; a2; : : : ; anq
such that b oth

a1 � a2 � � � � � an and

1
a1

�
1
a2

� � � � �
1
an

are integers.

(Singapore)

Answer: n � 3.

Solution 1. For n � 1, a1 PZ¡ 0 and

1
a1

PZ¡ 0 if and only if a1 � 1. Next we show that

(i) There are �nitely many px; yq PQ2
¡ 0 satisfying x � y PZ and

1
x � 1

y PZ

Write x � a
b and y � c

d with a; b; c; dPZ¡ 0 and gcdpa; bq � gcdpc; dq � 1. Then x � y PZ
and

1
x � 1

y PZ is equivalent to the two divisibility conditions

bd| ad � bc p1q and ac | ad � bc p2q

Condition (1) implies that d | ad � bc ðñ d | bc ðñ d | b since gcdpc; dq � 1. Still

from (1) we get b | ad � bc ðñ b | ad ðñ b | d since gcdpa; bq � 1. From b | d and

d | b we have b � d.

An analogous reasoning with condition (2) shows that a � c. Hence x � a
b � c

d � y , i.e.,

the problem amounts to �nding all x P Q¡ 0 such that 2x P Z¡ 0 and

2
x P Z¡ 0 . Letting

n � 2x P Z¡ 0 , we have that

2
x P Z¡ 0 ðñ 4

n P Z¡ 0 ðñ n � 1, 2 or 4, and there are

�nitely many solutions, namely px; yq � p 1
2; 1

2q, p1; 1q or p2; 2q.

(ii) There are in�nitely many triples px; y; zq PQ2
¡ 0 such that x � y � z PZ and

1
x � 1

y � 1
z PZ .

We will lo ok for triples such that x � y � z � 1, so we may write them in the form

px; y; zq �
�

a
a � b� c

;
b

a � b� c
;

c
a � b� c



with a; b; cPZ¡ 0

We want these to satisfy

1
x

�
1
y

�
1
z

�
a � b� c

a
�

a � b� c
b

�
a � b� c

c
PZ ðñ

b� c
a

�
a � c

b
�

a � b
c

PZ

Fixing a � 1, it su�ces to �nd in�nitely many pairs pb; cq PZ2
¡ 0 such that

1
b

�
1
c

�
c
b

�
b
c

� 3 ðñ b2 � c2 � 3bc� b� c � 0 p�q

To show that equation p�q has in�nitely many solutions, we use Vieta jumping (also known

as root �ipping ): starting with b � 2, c � 3, the following algorithm generates in�nitely

many solutions. Let c ¥ b, and view p�q as a quadratic equation in b for c �xed:

b2 � p 3c � 1q �b� p c2 � cq � 0 p��q

Then there exists another ro ot b0 PZ of p��q which satis�es b� b0 � 3c� 1 and b�b0 � c2� c.

Since c ¥ b by assumption,

b0 �
c2 � c

b
¥

c2 � c
c

¡ c

Hence from the solution pb; cq we obtain another one pc; b0q with b0 ¡ c, and we can then

�jump� again, this time with c as the �variable� in the quadratic p�q. This algorithm will

generate an in�nite sequence of distinct solutions, whose �rst terms are

p2; 3q; p3; 6q; p6; 14q; p14; 35q; p35; 90q; p90; 234q; p234; 611q; p611; 1598q; p1598; 4182q; : : :
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Comment. Although not needed for solving this problem, we may also explicitly solve the recursion

given by the Vieta jumping. De�ne the sequence pxnq as follows:

x0 � 2; x1 � 3 and xn� 2 � 3xn� 1 � xn � 1 for n ¥ 0

Then the triple

px; y; zq �
�

1
1 � xn � xn� 1

;
xn

1 � xn � xn� 1
;

xn� 1

1 � xn � xn� 1




satis�es the problem conditions for all n PN . It is easy to show that xn � F2n� 1 � 1, where Fn denotes

the n -th term of the Fib onacci sequence ( F0 � 0, F1 � 1, and Fn� 2 � Fn� 1 � Fn for n ¥ 0).

Solution 2. Call the n -tuples pa1; a2; : : : ; anq PQn
¡ 0 satisfying the conditions of the problem

statement good , and those for which

f pa1; : : : ; anq def � p a1 � a2 � � � � � anq
�

1
a1

�
1
a2

� � � � �
1
an




is an integer pretty . Then go o d n -tuples are pretty, and if pb1; : : : ; bnq is pretty then

�
b1

b1 � b2 � � � � � bn
;

b2

b1 � b2 � � � � � bn
; : : : ;

bn

b1 � b2 � � � � � bn




is go o d since the sum of its comp onents is 1, and the sum of the recipro cals of its comp onents

equals f pb1; : : : ; bnq. We declare pretty n -tuples prop ortional to each other equivalent since they

are precisely those which give rise to the same go o d n -tuple. Clearly, each such equivalence class

contains exactly one n -tuple of p ositive integers having no common prime divisors. Call such

n -tuple a primitive pretty tuple. Our task is to �nd in�nitely many primitive pretty n -tuples.

For n � 1, there is clearly a single primitive 1-tuple. For n � 2, we have f pa; bq � pa� bq2

ab ,

which can b e integral (for coprime a; bPZ¡ 0 ) only if a � b � 1 (see for instance (i) in the �rst

solution).

Now we construct in�nitely many primitive pretty triples for n � 3. Fix b; c; k P Z¡ 0 ; we

will try to �nd su�cient conditions for the existence of an a P Q¡ 0 such that f pa; b; cq � k .

Write � � b � c, � � bc. From f pa; b; cq � k , we have that a should satisfy the quadratic

equation

a2 � � � a � p� 2 � p k � 1q� q � �� � 0 (1)

whose discriminant is

� � p � 2 � p k � 1q� q2 � 4� 2� � pp k � 1q� � � 2q2 � 4k� 2:

We need it to b e a square of an integer, say, � � M 2
for some M PZ , i.e., we want

ppk � 1q� � � 2q2 � M 2 � 2k � 2� 2

so that it su�ces to set

pk � 1q� � � 2 � � 2 � k; M � � 2 � k:

The �rst relation reads � 2 � p � � 1qpk � � q, so if b and c satisfy

� � 1 | � 2
i.e. bc� 1 | pb� cq2

(2)

then k � � 2

� � 1 � � will b e integral, and we �nd rational solutions to (1), namely

a �
�

� � 1
�

b� c
bc� 1

or a �
� 2 � �

�
�

bc� pbc� 1q
b� c
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We can now �nd in�nitely many pairs pb; cq satisfying (2) by Vieta jumping. For example,

if we imp ose

pb� cq2 � 5 � pbc� 1q

then all pairs pb; cq � p vi ; vi � 1q satisfy the ab ove condition, where

v1 � 2; v2 � 3; vi � 2 � 3vi � 1 � vi for i ¥ 0

For pb; cq � p vi ; vi � 1q, one of the solutions to (1) will b e a � p b � cq{pbc� 1q � 5{pb � cq �
5{pvi � vi � 1q. Then the pretty triple pa; b; cq will b e equivalent to the integral pretty triple

p5; vi pvi � vi � 1q; vi � 1pvi � vi � 1qq

After p ossibly dividing by 5, we obtain in�nitely many primitive pretty triples, as required.

Comment. There are many other in�nite series of pb; cq � p vi ; vi � 1q with bc� 1 | pb � cq2
. Some of

them are:

v1 � 1; v2 � 3; vi � 1 � 6vi � vi � 1; pvi � vi � 1q2 � 8 � pvi vi � 1 � 1q;

v1 � 1; v2 � 2; vi � 1 � 7vi � vi � 1; pvi � vi � 1q2 � 9 � pvi vi � 1 � 1q;

v1 � 1; v2 � 5; vi � 1 � 7vi � vi � 1; pvi � vi � 1q2 � 9 � pvi vi � 1 � 1q

(the last two are in fact one sequence prolonged in two p ossible directions).
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N7.

Say that an ordered pair px; yq of integers is an irreducible lattice point if x and y
are relatively prime. For any �nite set S of irreducible lattice p oints, show that there is a

homogenous p olynomial in two variables, f px; yq, with integer co e�cients, of degree at least 1,

such that f px; yq � 1 for each px; yq in the set S.

Note: A homogenous p olynomial of degree n is any nonzero p olynomial of the form

f px; yq � a0xn � a1xn� 1y � a2xn� 2y2 � � � � � an� 1xyn� 1 � anyn :

(U.S.A.)

Solution 1. First of all, we note that �nding a homogenous p olynomial f px; yq such that

f px; yq � � 1 is enough, b ecause we then have f 2px; yq � 1. Lab el the irreducible lattice p oints

px1; y1q through pxn ; ynq. If any two of these lattice p oints px i ; yi q and px j ; yj q lie on the same

line through the origin, then px j ; yj q � p� x i ; � yi q b ecause b oth of the p oints are irreducible.

We then have f px j ; yj q � � f px i ; yi q whenever f is homogenous, so we can assume that no two

of the lattice p oints are collinear with the origin by ignoring the extra lattice p oints.

Consider the homogenous p olynomials ` i px; yq � yi x � x i y and de�ne

gi px; yq �
¹

j � i

` j px; yq:

Then ` i px j ; yj q � 0 if and only if j � i , b ecause there is only one lattice p oint on each line

through the origin. Thus, gi px j ; yj q � 0 for all j � i . De�ne ai � gi px i ; yi q, and note that

ai � 0.

Note that gi px; yq is a degree n � 1 p olynomial with the following two prop erties:

1. gi px j ; yj q � 0 if j � i .

2. gi px i ; yi q � ai .

For any N ¥ n � 1, there also exists a p olynomial of degree N with the same two prop er-

ties. Sp eci�cally, let I i px; yq b e a degree 1 homogenous p olynomial such that I i px i ; yi q � 1,

which exists since px i ; yi q is irreducible. Then I i px; yqN �p n� 1qgi px; yq satis�es b oth of the ab ove

prop erties and has degree N .

We may now reduce the problem to the following claim:

Claim: For each positive integer a, there is a homogenous polynomial f apx; yq, with integer

coe�cients, of degree at least 1, such that f apx; yq � 1 pmod aq for al l relatively prime px; yq.

To see that this claim solves the problem, take a to b e the least common multiple of the

numb ers ai ( 1 ¤ i ¤ n ). Take f a given by the claim, cho ose some p ower f apx; yqk
that has

degree at least n � 1, and subtract appropriate multiples of the gi constructed ab ove to obtain

the desired p olynomial.

We prove the claim by factoring a. First, if a is a p ower of a prime pa � pkq, then we may

cho ose either:

� f apx; yq � p xp� 1 � yp� 1q� paq
if p is o dd;

� f apx; yq � p x2 � xy � y2q� paq
if p � 2.

Now supp ose a is any p ositive integer, and let a � q1q2 � � � qk , where the qi are prime p owers,

pairwise relatively prime. Let f qi b e the p olynomials just constructed, and let Fqi b e p owers of

these that all have the same degree. Note that

a
qi

Fqi px; yq �
a
qi

pmod aq

for any relatively prime x; y . By Bézout's lemma, there is an integer linear combination of

the

a
qi

that equals 1. Thus, there is a linear combination of the Fqi such that Fqi px; yq � 1
pmod aq for any relatively prime px; yq; and this p olynomial is homogenous b ecause all the Fqi

have the same degree.
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Solution 2. As in the previous solution, lab el the irreducible lattice p oints px1; y1q; : : : ; pxn ; ynq
and assume without loss of generality that no two of the p oints are collinear with the origin.

We induct on n to construct a homogenous p olynomial f px; yq such that f px i ; yi q � 1 for all

1 ¤ i ¤ n .

If n � 1: Since x1 and y1 are relatively prime, there exist some integers c; d such that

cx1 � dy1 � 1. Then f px; yq � cx � dy is suitable.

If n ¥ 2: By the induction hyp othesis we already have a homogeneous p olynomial gpx; yq
with gpx1; y1q � : : : � gpxn� 1; yn� 1q � 1. Let j � degg,

gnpx; yq �
n� 1¹

k� 1

pykx � xkyq;

and an � gnpxn ; ynq. By assumption, an � 0. Take some integers c; d such that cxn � dyn � 1.

We will construct f px; yq in the form

f px; yq � gpx; yqK � C � gnpx; yq � pcx � dyqL ;

where K and L are some p ositive integers and C is some integer. We assume that L � Kj � n� 1
so that f is homogenous.

Due to gpx1; y1q � : : : � gpxn� 1; yn� 1q � 1 and gnpx1; y1q � : : : � gnpxn� 1; yn� 1q � 0, the

prop erty f px1; y1q � : : : � f pxn� 1; yn� 1q � 1 is automatically satis�ed with any choice of K; L ,

and C .

Furthermore,

f pxn ; ynq � gpxn ; ynqK � C � gnpxn ; ynq � pcxn � dynqL � gpxn ; ynqK � Can :

If we have an exp onent K such that gpxn ; ynqK � 1 pmod anq, then we may cho ose C such that

f pxn ; ynq � 1. We now cho ose such a K .

Consider an arbitrary prime divisor p of an . By

p | an � gnpxn ; ynq �
n� 1¹

k� 1

pykxn � xkynq;

there is some 1 ¤ k   n such that xkyn � xnyk pmod pq. We �rst show that xkxn or ykyn is

relatively prime with p. This is trivial in the case xkyn � xnyk � 0 pmod pq. In the other case,

we have xkyn � xnyk � 0 pmod pq, If, say p | xk , then p - yk b ecause pxk ; ykq is irreducible, so

p | xn ; then p - yn b ecause pxk ; ykq is irreducible. In summary, p | xk implies p - ykyn . Similarly,

p | yn implies p - xkxn .

By the homogeneity of g we have the congruences

xd
k � gpxn ; ynq � gpxkxn ; xkynq � gpxkxn ; ykxnq � xd

n � gpxk ; ykq � xd
n pmod pq p1:1q

and

yd
k � gpxn ; ynq � gpykxn ; ykynq � gpxkyn ; ykynq � yd

n � gpxk ; ykq � yd
n pmod pq: p1:2q

If p - xkxn , then take the pp� 1qst
p ower of p1:1q; otherwise take the pp� 1qst

p ower of p1:2q;

by Fermat's theorem, in b oth cases we get

gpxn ; ynqp� 1 � 1 pmod pq:

If p� | m , then we have

gpxn ; ynqp� � 1pp� 1q � 1 pmod p� q;

which implies that the exp onent K � n � ' panq, which is a multiple of all p� � 1pp � 1q, is a

suitable choice. (The factor n is added only so that K ¥ n and so L ¡ 0.)
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Comment. It is p ossible to show that there is no constant C for which, given any two irreducible

lattice p oints, there is some homogenous p olynomial f of degree at most C with integer co e�cients

that takes the value 1 on the two p oints. Indeed, if one of the p oints is p1; 0q and the other is pa; bq,

the p olynomial f px; yq � a0xn � a1xn� 1y � � � � � anyn
should satisfy a0 � 1, and so an � 1 pmod bq.

If a � 3 and b � 2k
with k ¥ 3, then n ¥ 2k� 2

. If we cho ose 2k� 2 ¡ C , this gives a contradiction.
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N8.

Let p b e an o dd prime numb er and Z¡ 0 b e the set of p ositive integers. Supp ose that

a function f : Z¡ 0 � Z¡ 0 Ñ t 0; 1u satis�es the following prop erties:

� f p1; 1q � 0;

� f pa; bq � f pb; aq � 1 for any pair of relatively prime p ositive integers pa; bq not b oth equal

to 1;

� f pa � b; bq � f pa; bq for any pair of relatively prime p ositive integers pa; bq.

Prove that

p� 1¸

n� 1

f pn2; pq ¥
a

2p � 2:

(Italy)

Solution 1. Denote by A the set of all pairs of coprime p ositive integers. Notice that for

every pa; bq PA there exists a pair pu; vq PZ2
with ua � vb � 1. Moreover, if pu0; v0q is one

such pair, then all such pairs are of the form pu; vq � p u0 � kb; v0 � kaq, where k PZ . So there

exists a unique such pair pu; vq with � b{2   u ¤ b{2; we denote this pair by pu; vq � gpa; bq.

Lemma. Let pa; bq PA and pu; vq � gpa; bq. Then f pa; bq � 1 ðñ u ¡ 0.

Proof. We induct on a � b. The base case is a � b � 2. In this case, we have that a � b � 1,

gpa; bq � gp1; 1q � p 0; 1q and f p1; 1q � 0, so the claim holds.

Assume now that a� b ¡ 2, and so a � b, since a and b are coprime. Two cases are p ossible.

Case 1: a ¡ b.

Notice that gpa � b; bq � p u; v � uq, since upa � bq � p v � uqb � 1 and u P p� b{2; b{2s. Thus

f pa; bq � 1 ðñ f pa � b; bq � 1 ðñ u ¡ 0 by the induction hyp othesis.

Case 2: a   b. (Then, clearly, b¥ 2.)

Now we estimate v . Since vb� 1 � ua, we have

1 �
ab
2

¡ vb¥ 1 �
ab
2

; so

1 � a
2

¥
1
b

�
a
2

¡ v ¥
1
b

�
a
2

¡ �
a
2

:

Thus 1 � a ¡ 2v ¡ � a, so a ¥ 2v ¡ � a, hence a{2 ¥ v ¡ � a{2, and thus gpb; aq � p v; uq.

Observe that f pa; bq � 1 ðñ f pb; aq � 0 ðñ f pb � a; aq � 0. We know from Case 1

that gpb� a; aq � p v; u � vq. We have f pb� a; aq � 0 ðñ v ¤ 0 by the inductive hyp othesis.

Then, since b ¡ a ¥ 1 and ua � vb� 1, we have v ¤ 0 ðñ u ¡ 0, and we are done. l

The Lemma proves that, for all pa; bq P A , f pa; bq � 1 if and only if the inverse of a
mo dulo b, taken in t 1; 2; : : : ; b � 1u, is at most b{2. Then, for any o dd prime p and integer

n such that n � 0 pmod pq, f pn2; pq � 1 i� the inverse of n2 mod p is less than p{2. Since

t n2 mod p: 1 ¤ n ¤ p � 1u � t n� 2 mod p: 1 ¤ n ¤ p � 1u, including multiplicities (two for

each quadratic residue in each set), we conclude that the desired sum is twice the numb er of

quadratic residues that are less than p{2, i.e.,

p� 1¸

n� 1

f pn2; pq � 2

�
�
�
�

"
k : 1 ¤ k ¤

p � 1
2

and k2 mod p  
p
2

* �
�
�
� : (1)

Since the numb er of p erfect squares in the interval r1; p{2q is t
a

p{2u ¡
a

p{2 � 1, we

conclude that

p� 1¸

n� 1

f pn2; pq ¡ 2
� c

p
2

� 1



�
a

2p � 2:



Shortlisted problems � solutions 89

Solution 2. We provide a di�erent pro of for the Lemma. For this purp ose, we use continued

fractions to �nd gpa; bq � p u; vq explicitly.

The function f is completely determined on A by the following

Claim. Represent a{b as a continued fraction; that is, let a0 b e an integer and a1; : : : ; ak b e

p ositive integers such that ak ¥ 2 and

a
b

� a0 �
1

a1 �
1

a2 �
1

� � � �
1
ak

� r a0; a1; a2; : : : ; aks:

Then f pa; bq � 0 ðñ k is even.

Proof. We induct on b. If b � 1, then a{b � r as and k � 0. Then, for a ¥ 1, an easy induction

shows that f pa;1q � f p1; 1q � 0.

Now consider the case b ¡ 1. Perform the Euclidean division a � qb� r , with 0 ¤ r   b.

We have r � 0 b ecause gcdpa; bq � 1. Hence

f pa; bq � f pr; bq � 1 � f pb; rq;
a
b

� r q; a1; : : : ; aks; and

b
r

� r a1; a2; : : : ; aks:

Then the numb er of terms in the continued fraction representations of a{b and b{r di�er by

one. Since r   b, the inductive hyp othesis yields

f pb; rq � 0 ðñ k � 1 is even,

and thus

f pa; bq � 0 ðñ f pb; rq � 1 ðñ k � 1 is o dd ðñ k is even. l

Now we use the following well-known prop erties of continued fractions to prove the Lemma:

Let pi and qi b e coprime p ositive integers with ra0; a1; a2; : : : ; ai s � pi {qi , with the notation

b orrowed from the Claim. In particular, a{b � r a0; a1; a2; : : : ; aks � pk{qk . Assume that k ¡ 0
and de�ne q� 1 � 0 if necessary. Then

� qk � akqk� 1 � qk� 2 , and

� aqk� 1 � bpk� 1 � pkqk� 1 � qkpk� 1 � p� 1qk� 1
.

Assume that k ¡ 0. Then ak ¥ 2, and

b � qk � akqk� 1 � qk� 2 ¥ akqk� 1 ¥ 2qk� 1 ùñ qk� 1 ¤
b
2

;

with strict inequality for k ¡ 1, and

p� 1qk� 1qk� 1a � p� 1qkpk� 1b � 1:

Now we �nish the pro of of the Lemma. It is immediate for k � 0. If k � 1, then p� 1qk� 1 � 1,

so

� b{2   0 ¤ p� 1qk� 1qk� 1 ¤ b{2:

If k ¡ 1, we have qk� 1   b{2, so

� b{2   p� 1qk� 1qk� 1   b{2:

Thus, for any k ¡ 0, we �nd that gpa; bq � pp� 1qk� 1qk� 1; p� 1qkpk� 1q, and so

f pa; bq � 1 ðñ k is o dd ðñ u � p� 1qk� 1qk� 1 ¡ 0:
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Comment 1. The Lemma can also b e established by observing that f is uniquely de�ned on A ,

de�ning f 1pa; bq � 1 if u ¡ 0 in gpa; bq � p u; vq and f 1pa; bq � 0 otherwise, and verifying that f 1

satis�es all the conditions from the statement.

It seems that the main di�culty of the problem is in conjecturing the Lemma.

Comment 2. The case p � 1 pmod 4q is, in fact, easier than the original problem. We have, in

general, for 1 ¤ a ¤ p � 1,

f pa; pq � 1� f pp; aq � 1� f pp� a; aq � f pa; p� aq � f pa�p p� aq; p� aq � f pp; p� aq � 1� f pp� a; pq:

If p � 1 pmod 4q, then a is a quadratic residue mo dulo p if and only if p � a is a quadratic residue

mo dulo p. Therefore, denoting by r k (with 1 ¤ r k ¤ p � 1) the remainder of the division of k2
by p,

we get

p� 1¸

n� 1

f pn2; pq �
p� 1¸

n� 1

f prn ; pq �
1
2

p� 1¸

n� 1

pf prn ; pq � f pp � rn ; pqq �
p � 1

2
:

Comment 3. The estimate for the sum

° p
n� 1 f pn2; pq can b e improved by re�ning the �nal argument

in Solution 1. In fact, one can prove that

p� 1¸

n� 1

f pn2; pq ¥
p � 1

16
:

By counting the numb er of p erfect squares in the intervals rkp;pk � 1{2qpq, we �nd that

p� 1¸

n� 1

f pn2; pq �
p� 1¸

k� 0

�[ d �
k �

1
2



p

_

�
Ya

kp
]
�

: (2)

Each summand of (2) is non-negative. We now estimate the numb er of p ositive summands. Supp ose

that a summand is zero, i.e., [ d �
k �

1
2



p

_

�
Ya

kp
]

� : q:

Then b oth of the numb ers kp and kp � p{2 lie within the interval rq2; pq � 1q2q. Hence

p
2

  p q � 1q2 � q2;

which implies

q ¥
p � 1

4
:

Since q ¤
?

kp, if the k th

summand of (2) is zero, then

k ¥
q2

p
¥

pp � 1q2

16p
¡

p � 2
16

ùñ k ¥
p � 1

16
:

So at least the �rst rp� 1
16 s summands (from k � 0 to k � rp� 1

16 s� 1) are p ositive, and the result

follows.

Comment 4. The b ound can b e further improved by using di�erent metho ds. In fact, we prove that

p� 1¸

n� 1

f pn2; pq ¥
p � 3

4
:

To that end, we use the Legendre symb ol

�
a
p



�

$
'&

'%

0 if p � a

1 if a is a nonzero quadratic residue mod p

� 1 otherwise.

We start with the following Claim, which tells us that there are not to o many consecutive quadratic

residues or consecutive quadratic non-residues.
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Claim.

° p� 1
n� 1

�
n
p

��
n� 1

p

�
� � 1.

Proof. We have

�
n
p

��
n� 1

p

�
�

� npn� 1q
p

�
. For 1 ¤ n ¤ p� 1, we get that npn � 1q � n2p1� n� 1q pmod pq,

hence

� npn� 1q
p

�
�

�
1� n � 1

p

�
. Since t 1 � n� 1 mod p: 1 ¤ n ¤ p � 1u � t 0; 2; 3; : : : ; p � 1 mod pu, we �nd

p� 1¸

n� 1

�
n
p


 �
n � 1

p



�

p� 1¸

n� 1

�
1 � n� 1

p



�

p� 1¸

n� 1

�
n
p



� 1 � � 1;

b ecause

° p
n� 1

�
n
p

�
� 0. l

Observe that (1) b ecomes

p� 1¸

n� 1

f pn2; pq � 2|S| ; S �
"

r : 1 ¤ r ¤
p � 1

2
and

�
r
p



� 1

*
:

We connect S with the sum from the claim by pairing quadratic residues and quadratic non-residues.

To that end, de�ne

S1 �
"

r : 1 ¤ r ¤
p � 1

2
and

�
r
p



� � 1

*

T �
"

r :
p � 1

2
¤ r ¤ p � 1 and

�
r
p



� 1

*

T1 �
"

r :
p � 1

2
¤ r ¤ p � 1 and

�
r
p



� � 1

*

Since there are exactly pp � 1q{2 nonzero quadratic residues mo dulo p, |S| � | T | � p p � 1q{2. Also

we obviously have |T | � | T1| � p p � 1q{2. Then |S| � | T1| .

For the sake of brevity, de�ne t � | S| � | T1| . If

� n
p

�� n� 1
p

�
� � 1, then exactly of one the numb ers

� n
p

�
and

� n� 1
p

�
is equal to 1, so

�
�
�
�

"
n : 1 ¤ n ¤

p � 3
2

and

�
n
p


 �
n � 1

p



� � 1

* �
�
�
� ¤ | S| � | S � 1| � 2t:

On the other hand, if

�
n
p

��
n� 1

p

�
� � 1, then exactly one of

�
n
p

�
and

�
n� 1

p

�
is equal to � 1, and

�
�
�
�

"
n :

p � 1
2

¤ n ¤ p � 2 and

�
n
p


 �
n � 1

p



� � 1

* �
�
�
� ¤ | T1| � | T1 � 1| � 2t:

Thus, taking into account that the middle term

� pp� 1q{2
p

�� pp� 1q{2
p

�
may happ en to b e � 1,

�
�
�
�

"
n : 1 ¤ n ¤ p � 2 and

�
n
p


 �
n � 1

p



� � 1

* �
�
�
� ¤ 4t � 1:

This implies that

�
�
�
�

"
n : 1 ¤ n ¤ p � 2 and

�
n
p


 �
n � 1

p



� 1

* �
�
�
� ¥ pp � 2q � p 4t � 1q � p � 4t � 3;

and so

� 1 �
p� 1¸

n� 1

�
n
p


 �
n � 1

p



¥ p � 4t � 3 � p 4t � 1q � p � 8t � 4;

which implies 8t ¥ p � 3, and thus

p� 1¸

n� 1

f pn2; pq � 2t ¥
p � 3

4
:
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Comment 5. It is p ossible to prove that

p� 1¸

n� 1

f pn2; pq ¥
p � 1

2
:

The case p � 1 pmod 4q was already mentioned, and it is the equality case. If p � 3 pmod 4q,

then, by a theorem of Dirichlet, we have

�
�
�
�

"
r : 1 ¤ r ¤

p � 1
2

and

�
r
p



� 1

* �
�
�
� ¡

p � 1
4

;

which implies the result.

See https://en.wikipedia.org/wiki/Quadratic_residue#Dirichlet.27s_formulas for the full

statement of the theorem. It seems that no elementary pro of of it is known; a pro of using complex

analysis is available, for instance, in Chapter 7 of the b o ok Quadratic Residues and Non-Residues:

Selected Topics , by Steve Wright, available in https://arxiv.org/abs/1408.0235 .

https://en.wikipedia.org/wiki/Quadratic_residue#Dirichlet.27s_formulas
https://arxiv.org/abs/1408.0235
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